

GARD-AG-269

AGARD-AG-269

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT

7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

AGARDograph No. 269

Air-Breathing Engine Test Facilities Register

This document has been approved for public release and alicable di tribution is unlimited.

NORTH ATLANTIC TREATY ORGANIZATION

DISTRIBUTION AND AVAILABILITY
ON BACK COVER

81 10 6 245

NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

12/12

AGARDograph No. 269

AIR-BREATHING ENGINE TEST FACILITIES REGISTER

Compiled by

Joachim H.Krengel

This AGARDograph was prepared at the request of the Propulsion and Energetics Panel of AGARD.

46 143

يم حال

THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Exchanging of scientific and technical information;
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the field of aerospace research and development;
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;
- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the author.

Published July 1981
Copyright © AGARD 1981
All Rights Reserved

ISBN 92-835-1394-0

Printed by Technical Editing and Reproduction Ltd Harford House, 7–9 Charlotte St, London, W1P 1HD

PREFACE

This Air-Breathing Engine Test Facilities Register was initiated by and prepared under the auspices of the AGARD Propulsion and Energetics Panel Subcommittee 01. The Subcommittee acknowledges the cooperation of the participating agencies in making this information available for publication. The Subcommittee is indebted to the author, Mr. Krengel, the DFVLR and the German Federal Ministry of Defence for donating the support which made this report possible.

It is observed that test facilities can be a large expense in the accomplishment of many research projects and development activities. Sometimes these facilities are only required on an occasional basis and construction of the test facilities by those who may wish to use them is not justified. The Propulsion and Energetics Panel intends for this compilation of the facility information to serve all scientists and engineers within the NATO Countries as a ready index of those test facilities which are available to them.

Only summary information is provided but contacts at each installation are given who can provide the desired detail.

James G. Mitchell Chairman, Subcommittee O1

Accession For

NTIS GRAMI
PUIC TAB
Unonnoursed
Intifferentian

CONTENTS

		Page
PR	EFACE by J.G.Mitchell	iii
INT	TRODUCTION	v
1.	LIST OF ORGANISATIONS	1-1 - 1-3
2.	TEST CAPACITY OF ORGANISATIONS	2-1 - 2-30
3.	LIST OF ALTITUDE TEST CELLS	3-1 - 3-2
4.	LIST OF SEA LEVEL TEST FACILITIES	4-1 - 4-3
5.	LIST OF TEST CELLS WITH SPECIAL CAPABILITIES	5-1 - 5-3
6.	ALTITUDE TEST CELLS	6-1 - 6-38
7.	SEA LEVEL TEST CELLS WITH SPECIAL CAPABILITIES	7-1 - 7-27
8.	APPENDICES I Supporting Panel Members II Altitude Test Cell Information (continued)	8-1 8-2
	III Abbreviations IV Guick User's Flow Chart	8-3 - 8-4 8-5

INTRODUCTION

In context with its Symposium on "Turbine Engine Testing" it has been the aim of the Propulsion and Energetics Panel of AGARD to offer to the NATO community a survey on air-breathing engine test facilities which are presently available in NATO countries. It was concluded that the main interest is focussed on test facilities for research and development of aero-engines to be used as prime thrusters. Consequently production and post-overhaul acceptance test facilities are not to be found in this register, even though in some cases they have been used for special investigations.

In this book the reader will find a fairly complete survey of organisations which operate altitude and sea level test facilities for turbo-jet (including turbo-fan), ram-jet, and turbo-shaft engines. Though the book cannot claim comprehensiveness its initial working title was kept but the word register should not be understood in its prime sense and official meaning. Summary information about the test capacity of organisations and more detailed data for a number of individual test cells are offered and may be used for quick comparison and survey or for a preliminary selection of test facilities which the reader may wish to use in his research and development programmes.

There are two items to be observed when using the register:
The first one though randomly distributed is imminent to the applied system of raising and soliciting data. The user of this compilation will realise soon that depth and detail of information and data vary considerably between different organisations and for different test cells. This certainly is a deficiency of the register but one should bear in mind that participating in AGARD activities is voluntary and response to the inquiry made by a detailed question format was possible only to the extent of national or organisational desire and judgement. Most of the major testing centers have listed only their primary test cells which are used for development purposes.

The second item preferably applies to the facilities with altitude capability and may also be worth mentioning here. There usually are three factors which limit the operational range of a test cell: the electrical power available at the site, the compressor machinery for ram and exhaust purposes, and the piping system to and from the test cell. In many cases only the individual maximum values are quoted which in their direct combination would lead to unrealistic test cell capabilities. It was by no means possible to obtain and include triple sets of these data in order to characterize the capability of the individual test cell exactly. Since the actual range of operation does often also depend on the engine installed in the test cell an inquiry for a specific case will be the most effective approach. Very often a small alteration or adjustment leads to a satisfactory solution.

The compilation was effected upon request of the AGARD Propulsion and Energetics Panel, and Panel Members of almost all nations solicited data and helped in many ways. To them and to the engineers who submitted the data of the various organisations the author is very much indebted and wishes to express his thanks. He also acknowledges the permission of DFVLR and the German Federal Ministry of Defence to work on this AGARD activity.

Any major omissions or errors should be reported to the Propulsion and Energetics Panel Executive at AGARD Headquarters and corrections will be issued, if necessary, in due course.

1 LIST OF ORGANISATIONS

COUNTRY	TEST FACILITIES INCLUDED IN THIS REGISTER							
ORGANISATION LOCATION			LTITI RJ	JDE TS		A LE RJ		PAG
CANADA		1		(1) 1)	10		14 + (1)	· · · - ·
Carleton University Gas Turbine Labora- tory Ottawa, Ontario							1	2-1
Confederation College of Applied Arts & Tech- nology, Aviation & Moti- ve Power Dep. Thunder Bay, Ontario							1	2-2
National Research Council Canada Ottawa, Ontario		1		(1)	4		1	2-3
Pratt & Whitney Aircraft of Canada Ltd. St. Hubert and Longueuil, Quebec					4		8 + (1)	2-4
Rolls Royce (Canada) Ltd. Lachine and Montreal, Quebec					2		2	2-5
Westinghouse Canada Ltd. Hamilton, Ontario							1	2-6
FRANCE		7	(1)	(4)	14		(2)	
Centre d'Essais des Propulseurs Saclay		7	(1)	(4)	3		(2)	2-7
SNECMA Sociéte Nationale d'Etude et de Construction de Mo- teurs d'Aviation Moissy Cramayel					11			2-8
GERMANY (FEDERAL REPUBLIC)		1	(1)	(1)	4	1	4	
DFVLR Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V. Köln-Porz						1		2-9
MTU Motoren- und Turbinen- Union München GmbH München und Manching					4		4	2-1
Universität Stuttgart Institut für Luftfahrt- Antriebe Stuttgart		1	(1)	(1)				2-1

¹⁾ Number in brackets refers to test cells already included in preceding column.

1 LIST OF ORGANISATIONS

COUNTRY	TEST FACILITIES INCLUDED IN THIS REGISTER					
ORGANISATION LOCATION		TITU RJ			LEVEL RJ TS	PAGI
ITALY				1	4	
Alfa Romeo Aviazione Napoli					2	2-1
Costruzioni Aeronautiche G. Agusta Elicotteri Meridionali Frosinone					1	2-1
Fiat Aviazione S.p.A. Torino				1	1	2-14
UNITED KINGDOM	8	(3)	(1)	25	18 (4)	
Lucas Aerospace Ltd. Kenilwerth, Warwickshire				1		2-1
National Gas Turbine Establ. Pyestock, Farnborough	5	(2)		1	(1)	2-1
Noel Penny Turbines Ltd. Coventry					5	2-1
Plessey Co. Ltd. Ilford, Essex					1	2-1
Rolls Royce Ltd. Bristol Derby Hatfield Hucknall	1 2	(1)	(1)	11 6 6	3 9 (3)	2-1
UNITED STATES	37	7	6	11	(4)	
Air Force Aeropropulsion Lab.,Wright-Patterson Air Force Base Ohio	3	(1)				2-2
AIResearch Manufacturing Co. Propulsion Engines Laboratory Torrance, California				2		2-2
Arnold Engineering De- velopment Center Arnold Air Force Station, Tennessee	11	1 (10)				2-2
General Electric Co. Cincinnati, Ohio	2					2-2
General Motors Corp. Detroit Diesel Allison Div. Indianapolis, Ind.	2		2 (1)			2-2
The Johns Hopkins Univer- sity Applied Physics La- boratory Laurel, MD.	4					2-2

1 LIST OF ORGANISATIONS

COUNTRY	TEST	FAC	IL	ITIE	S INCL	UDED	IN TH	HIS REGISTER	2
ORGANISATION LOCATION		LTIT RJ		E TS		LEVE RJ 1			PAGE
The Marquardt Co. Van Nuys, California	2	1 (2)							2~2
NASA, National Aero- nautics and Space Administration Lewis Research Center Cleveland, Ohio	4	(2)							2-27
Naval Air Propulsion Center Trenton, New Jersey	3	(1)		4	4	(4)		2-28
Teledyne CAE Toledo, Ohio	2				2				2-2
United Technologies Corp.									2-30
Pratt and Whitney Aircraft Div.									
Florida Research & Development Center West Palm Beach, Fl.	3				3				
Andrew Willgoos Turbine Labora- tory East Hartford, Connecticut	5								
Chemical Systems Divis. Sunnyvale, California		1							

NAME : Carleton University

Department of Mechanical and Aeronautical Engineering

Gas Turbine Laboratory

ADDRESS : Ottawa K1S 5B6, Canada

CONTACT : Chairman, Department of Mechanical and Aeronautical

Engineering

Phone 613-231-2639

2 <u>TEST CELLS</u> One test cell for turbo-shaft engines like Pratt and

Whitney ST-6. Kahn water brake and fairly comprehensive instrumentation including air flow measurement avail- $\,$

able.

1 ORGANISATION

NAME : Confederation College of Applied Arts & Technology

Aviation & Motive Power Department

ADDRESS : P.O. Box 398

Thunder Bay, Ontario

Canada

CONTACT : W.B. Troniak - for contractual purposes

N. Denetto - for technical information

Phone 807-577-5751 (both gentlemen)

Pratt & IEST CELLS One test cell for turbo-shaft engines like Pratt &

Whitney PT6A - 20.

Instrumentation similar to Twin Otter.

1 ORGANISATION

NAME : National Research Council of Canada

Division of Mechanical Engineering

ADDRESS : Ottawa, Ontario K1A OR6, Canada

CONTACT: Various, see test cell data section 6 + 7

2 TEST CELLS

Designation	Engine	Altitude	Mass Flow kg/s	Size				Page
			, .	W	H L			
Altitude Test Chamber	TJ/TS	13.7 km	5.4	Diam	2.13 m	3.66	m	6-33
No 5 TC	TJ	Sea Level	136	4.6mx	4.6 m x	18.3	m	
No 1 TC	TJ	Sea Level	15.2	6 m x	5 m x	12	m	
No 4 TC	TJ	Sea Level	15.0	7.5mx	7.5 m x	18	m	7-16
No 2 TC	TS	Sea Level	5.0	6 m x	5 m x	17.4	m	
Propulsion Tunnel	TJ	Sea Level	1324	3 m x	6 m x	12	m	

3 AIR SUPPLY AND EXHAUST FACILITIES

3.1 SUPPLY 5000 kW compressor set (Propulsion Tunnel)

15 kg/s at 700 kPa¹⁾ 5 kg/s at 1000 kPa

COOLING 335 kW air refrigeration system

HEATING 5 kg/s at 1000 kPa up to 373 K

3.2 EXHAUST 2000 kW exhauster set (Propulsion Tunnel)

22.3 m^3/s suction capacity 1: 1.8 ÷ 5.4 kg/s

7 ÷21 kPa

¹⁾ same compressor

NAME : Pratt & Whitney Aircraft of Canada Ltd.

ADDRESS : Longueuil, Quebec, Canada

CONTACT : Manager, Test Support Engineering

Phone 677-9411 Ext. 619

2 TEST CELLS

Designation	Engine	Altitude	Mass Flow kg/s	Size	Page
5 - 11	TJ	Sea Level			7-11
1 - 16	TJ	Sea Level	227		
1 - 17	TJ	Sea Level	227		
1 - 11A	TJ/TS	Sea Level			7-17
2 - 3	TS	Sea Level			
2 - 1	TS	Sea Level	11.4		
1 - 5	TS	Sea Level	11.4		
1 - 2	TS	Sea Level	8.2		
1 - 1	TS	Sea Level	385+		7-24
1 - 6	TS	Sea Level	385+		7-24
1 - 18	TS	Sea Level	385+		7-24
2 - 4	TS	Sea Level	385+		7-24

⁺ includes propeller mass flow

NAME : Rolls Royce (Canada) Limited

ADDRESS : 9500 Cote de Liesse Road

Lachine, Quebec, H4Y 1B7

CONTACT : Director of Quality

Phone 514-631-3541

2 TEST CELLS

Designation	Engine	Altitude	Mass Flow kg/s	Size	Page
No 3 TB	TJ	Sea Level	150		
No 2 TB	TJ	Sea Level	100		
No 1 TB	TS	Sea Level	20		
T 64 ⁺	TS	Sea Level			7-20

⁺Prop Test Cell

ORGANISATION

NAME : Westinghouse Canada Ltd.

ADDRESS : P.O. Box 510

Hamilton, Ontario

Canada

CONTACT : Manager of Product Reliability

Phone 416-528-8811 Ext. 2294

2 <u>IEST CELLS</u> One building with two water dynamometers

NAME : Centre d'Essais des Propulseurs

ADDRESS : Saclay

91 406 Orsay

France

CONTACT : Monsieur le Directeur

(or as mentioned in sections 6 and 7)

2 TEST CELLS

Designation	Engine	Altitude	Mass Flow kg/s	Size Diam	Length	Page
R 5	TJ	20 km	375	5.5 m	30.0 m	6-21
R 3	$\mathtt{T}J$	20 'sm	200	3.5 m	18.0 m	6-22
R 4	TJ	20 km	200	3.5 m	18.0 m	6-22
s 1	TJ RJ TS	15 km	100	3.5 m	15.0 m	6-31
C 1	TJ TS	11 km	55	3.2 m	8.0 m	6-34
R 2	TJ TS	10 km		3.5 m		6-35
R 6	TJ TS	10 km		5.5 m		6-36
тк	TJ TS	Sea L.	Unlimited	55 m x	25 m concrete area	7- 5
т 1	TJ	Sea L.	1200	10 m x	10 m x 26 m	
н 9	TJ TS	Sea L.				7-18

NAME

Société Nationale d'Etude et de Construction de Moteurs d'Aviation

ADDRESS

77 550 Moissy Cramayel

France

CONTACT

M. le Chef du Département Essais aux Bancs Direction Technique

Phone:

6.437.91.23 Ext. 3118

TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size H x W x L
W 1 C 7	ТJ	Sea L.	500	8 m x 7 m x 22.4 m
W 2 C 7 1)	ТJ	Sea L.	400	8 m x 7 m x 22.4 m
w 9 H 7	ТJ	Sea L.	100	7.2 m x 7 m x 19 m
w 10 H 7	TJ	Sea L.	100	7.2 m x 7 m x 19 m
W 11 H 7	TJ	Sea L.	200	7.8 m x 7 m x 23.2 m
W 12 H 7	ТJ	Sea L.	100	7.8 m x 7 m x 22 m
w 7 H 5	ТĴ	Sea L.	100	6.2 m x 5 m x 16.2 m
w 8 H 5	ТJ	Sea L.	100	6.2 m x 5 m x 16.2 m
w 1 H 8	TJ	Sea L.	500	7.2 m x 7.5 m x 27 m
I Site No 3	ТJ	Sea L.	Unlimited	Concrete surface area of 10.000 m ²
I Site No 5	TJ	Sea L.	Unlimited	Open air test bed

¹⁾ Reverse thrust capability

NAME : Deutsche Forschungs- und Versuchsanstalt

für Luft- und Raumfahrt e.V. (DFVLR)

ADDRESS : Postfach 90 60 58

5000 Köln 90

Federal Republic of Germany

CONTACT : Institut für Experimentelle Strömungsmechanik

Phone: 2203-601-2278

2 TEST CELLS

Designation Engine Altitude Mass Flow Size Page

H M L

VMK RJ Sea Level 90 kg/s 4 m x 4 m x 6 m 7-15

up to 7.5 km⁺

3 AIR SUPPLY FACILITIES

SUPPLY 1000 m³ compressed dry air storage at 6000 kPa (about 70 Mg)

for blow-down mode

10 kg/s at 6000 kPa continuous

HEATING Regenerative heater: max. temperature 800 K

max. pressure 3500 kPa

capacity 60 kg/s for 1 min up to

800 K

tdepending on Mach-Number

ORGANISATION

NAME Motoren- und Turbinen-Union München GmbH

ADDRESS

Postfach 50 06 40 8000 München 50 Fed. Rep. of Germany

CONTACT

Dep. EVP Development Test Facilities

Phone 89-1489-708

2 JEST CELLS

Designation	Engine	Altitude of Test St	Mass Flow , kg/s	Size H	W	L	Page
ETB 1	ТJ	0.5 km	250/700 ⁺	6 m x	6 m x	20 m	
ETB 2	ТJ	0.5 km	250/700 ⁺	6 m x	6 m x	20 m	
Open Air Test Bed	TJ	0.5 km	100	6 m x (mobil			7-14
ЕТВ 3	TS	0.5 km	2.5/5+	4 m x	4 m x	7 m	
ETB 4	TS	0.5 km	2.5/6+	4 m x	4 m x	7 m	
ETB 6	TS	0.5 km	3	4 m x	4 m x	7 m	
ETB 7	TS	0.5 km	2	4 m x	4 m x	7 m	
ETB 9	TJ	0.5 km	5				

^{*} Supply/Exhaust Capacity

NAME Universität Stuttgart

ADDRESS

Pfaffenwaldring 6 7000 Stuttgart 80 (Vaihingen)

Fed. Rep. of Germany

CONTACT Direktor, Institut für Luftfahrt-Antriebe

> 711-7841 Phone Telex 07 255 727

TEST CELLS

Designation	Eng.	ine	Altitude	Mass Flow kg/s	Size	Page
HPT	ТJ	RJ	20 km	70	Diam 3 m,	Length 10 m 6-23
HPT ¹⁾	TS		16 km	70	3 m	10 m 6-23

¹⁾ alternative use

AIR SUPPLY AND EXHAUST FACILITIES

Compressor	volumetric flow	pressure ratio	entry temp.	application
AV 1	60 m ³ /s	2.2 (max. 2.5)	303 K	exhaust only
AV 2	31 m ³ /x	2.2 (max. 2.5)	303 K	ram + exhaust
AV 3	16 m ³ /s	2.0 (max. 2.5)	303 K	ram + exhaust

Cooling turbine

	mass flow	pressure ratio	entry/exit temp.	application
LT 1	13 kg/s	up to 9	263 K/208-263 K	ram air coo- ling
LT 2	13 kg/s	up to 9	263 K/208-263 K	ram air coo- ling

Refrigeration system:

Two stage system capable of pre-cooling (before entering the cooling turbines) maximum mass flow $52\ kg/s$ to $263\ K$ during 4 hours.

Dryer

Absorption dryer may be used before passing the air flow into the second cooling stage of the refrigeration system.

Heater

Inlet air flows of 40 kg/s may be heated up to 423/450 K by a hot water heater which receives the heat either from $\it r$ steamplant or from the exhaust gas cooler.

SUPPLEMENTARY INFORMATION

Höhenprüfstand für Turboflugtriebwerke, Beschreibung der Anlage ILA 80 A - 04

ORGANISATION

NAME : Alfa Romeo Aviazione

Azienda di Pomigliano d'Arco

ADDRESS : 80 038 Pomigliano d'Arco

Napoli

Italy

CONTACT : Technical Director

Phone 8841344 Telex 710083 ALFAPO

2 <u>TEST CELLS</u>

Designation	Engine	Altitude	Mass Flow	Size H x W x L	Page
Hangar TB	TS	Sea L.		6 m x 5 m x 14 m	7-27
Dynamom. Test Bed	TS	Sea L.		4 m x 5 m x 7 m	

NAME : Elicotteri Meridionali

ADDRESS : Via G. Agusta 1 03100 Frosinone

Italy

CONTACT : Allison 250 Technical and Service Manager

Phone 0775-82801 Telex 611377

2 TEST CELLS

Designation Engine Altitude Mass Flow Size H W L

TS Sea Level 3 kg/s 8 m x 7 m x 9 m

1 ORGANISATION

NAME : Fiat Aviazione S.p.A.

ADDRESS : Corso Ferrucci 122

10100 Torino

Italy

CONTACT : Direzione Progettazione

Phone 11 - 332133 Telex FIATAP 221 564

2 TEST_CELLS

Designation	Engine	Altitude	Mass Flow	Size H	W	L
Fiat Sangone Cell No 6	TJ	Sea Level	400 kg/s	10 m x	9 m x	: 27 m
Fiat Sangone Cell No 9	TS	Sea Level		4 m ×	4.4 m	x 10 m

1 ORGANISATION

NAME : Lucas Aerospace Ltd.

ADDRESS : Oldwich Lane, Fen End

Kenilwerth, Warwickshire

England

CONTACT : Engineer in Charge, Engine Management Division

Phone Berkswell 32761 Telex 338781

2 TEST CELLS

Designation Engine Altitude Mass Flow Size

Honiley TJ Sea Level 5.5 m x 7.4 m x 21 m

ORGANISATION

National Gas Turbine Establishment NAME

Pyestock, Farnborough, Hants GU 14 OLS **ADDRESS**

England

Director, NGTE CONTACT

> 0252-44411 Telex 858 231 Phone

TEST CELLS

Designation	Engine	Altitude	Mass Flow kg/s	Size Diam	Length	Page
Cell 4 Cell 1 Cell 3 Cell 3 W Cell 2 Glen Test House	TJ/RJ TJ/RJ TJ/RJ TJ TJ/RJ TJ/TS	O ÷ 30 km ⁺ O ÷ 30 km ⁺ O ÷ 19 km O ÷ 18 km O ÷ 17 km Sea Level	270 180 270 630 180 200	9 m 3.7 m 6 m 7.5 m 3.7 m	24 m 17 m	6- 4 6- 5 6-28 6-29 6-30

^{*}Supersonic free jet with spill diffusion

AIR SUPPLY AND EXHAUST FACILITIES

NGTE has a central air supply/exhaust system serving all the test cells with local additional heating/cooling of the inlet air at the cells.

3.1 SUPPLY

Compressors: 8 GEC centrifugal sets which can be used either as compressors or exhausters at 9/1 or 3/1 pressure ratio.

As compressors: 90 kg/s at 910 kPa abs per set or 122 kg/s at 304 kPa abs per set

Maximum power supply to site allows five sets to be r as

compressors (135 MW)

Two axial compressors each giving 27 kg/s at 600 kPa abs.

Minimum inlet temperature at cell: Cooling:

Cell 1 - ambient Cell 2 - ambient

Cell 3 - 41 kg/s at 200K from expansion turbine Cell 3W-363 kg/s at 236K from cold store system

Cell 4 - ambient

Heating: Maximum inlet temperature at cell:

Cell 1 - 483K + 3 MW trimming heater Cell 2 - 483K + 3 MW trimming heater

Cell 3 - 255 kg/s at 480 K plus 45 kg/s at

870K from oil fired heater

Cell 3W- ambient

Cell 4 - 255 kg/s at 480 K plus 45 kg/s at 870 K from oil

fired heater

3.2 EXHAUST 8 GEC centrifugal sets which can be used as exhausters:

9.4 kg/s at 11.3 kPa abs per set in 9/1 pressure ratio

arrangement, or:

37 kg/s at 33.8 kPa abs per set in 3/1 pressure ratio

arrangement

One axial exhauster: 25 kg/s at 11.3 kPa abs with maximum

(No 10 m/c) driving power of 25 MW

One axial exhauster: 11.3 kg/s at 7.8 kPa abs with maximum

(No 9 m/c) driving power limit of 27 MW

4. SUPPLEMENTARY INFORMATION

General description and background: Engineering, June 14,21,28 1957

An altitude test facility for large turbofan engines P F Ashwood, Journal of Aircraft, Vol. 10, No 8, August 1973 Cell 3W:

Cell 4: Free jet testing of supersonic intake/engine combination

P F Ashwood, Journal Royal Aeronautical Society,

Vol. 74,pp 205-212, 1970

NAME : Noel Penny Turbines Ltd

ADDRESS : Siskin Drive, Toll Bar End

Coventry CV 3 4 FE

England

CONTACT : A. F. Varney

Phone 0203-301528
Telex Penny 311 065

2 IEST CELLS Five test cells suitable for sea-level testing of turbo-

shaft engines (maximum power 2575 kW).

The number of test cells may rise to eight within the near \cdot

future.

1 ORGANISATION

NAME : Plessey Co. Ltd.

ADDRESS : Vicarage Lane

Ilford, Essex

England

CONTACT : Test Facility Manager

Deputy Engineering Executive

Phone Titchfield 43031 Ext. 2428/2401

2 TEST CELLS

Designation Engine Altitude Mass Flow Size H W L

Plessey TS Sea Level 4.5 kg/s 2.7 m x 4.6 m x 9.1 m 7-26 Aerospace Test Fac. (6 cells)

NAME : Rolls Royce Ltd

1. Aero Division Bristol (RR - BR)

ADDRESS : P.O. Box 3

Filton, Bristol England

CONTACT : Assistant Chief Engineer

Test Engineers Department

Phone Bristol 693872 Ext. 384

2. Aero Division Derby (RR - DE)

ADDRESS :

P.O. Box 31 Derby DE 2 England 8BJ

CONTACT : Phone O332-42424 Telex 37645

3. Hatfield (RR - HA)

ADDRESS :

Manor Road Hatfield England

CONTACT : RR Site Manager

> Phone Hatfield 63830

4. Hucknall (RR - HU)

ADDRESS :

CONTACT :

2	TES	T CELLS					
	De	esignation	Engine	Altitude km	Mass Flow kg/s	Size H W L	Page
	BR	TP 131 A	TJ/RJ	27.4	182	Diam 3.05m x 24.4 m	6 - 7
	DE	ATF Cell 1	TJ/TS	21.3	272	Diam 3.81m x 11.5 m	6 - 19
	DE	ATF Cell 2	ТJ	21.3	272	2.75m x 3.81m x 11.5 m	6 - 19
	HU	TB No 9	TJ	Sea Level	unlimited	open air test bed (accept large fan engines)	7 - 1
	BR	METS A+B	ТJ	Sea Level	unlimited	6300m ² concrete area	7 - 2.
	HU	TB No 5	TJ/TS	Sea Level	unlimited	open air test bed (no large fan engines)	7 - 6
	HU	TB No 7	TJ/TS	Sea Level	unlimited	open air test bed	7 - 7
	DE	TB No 48	TJ	Sea Level	1000	12 m x 10 m x 64 m	
	DE	TB No 49	TJ	Sea Level	1000	12 m x 10 m x 64 m	
	HU	TB No 10	TJ	Sea Level	907		
	BR	TP 105	ТJ	Sea Level	536	13.4mx 11.9m x 21.0m	7 - 10
	BR	TP 137	TJ	Sea Level	536	13.4mx 11.9m x 24.0m	7 - 10
	BR	TP 107	TJ	Sea Level	454	7.3mx 7.0m x 11.6m	
	BR	TP 103	TJ	Sea Level	304	7.8mx 10.5m x 21.9m	
	BR	TP 104	TJ	Sea Level	304	7.8mx 10.5m x 21.9m	
	BR	TP 140	TJ	Sea Level	272	9.8mx 9.4m x 44.2m	
	BR	TP 141	ТJ	Sea Level	272	9.8mx 9.4m x 45.4m	
	HU	TB No 8	TJ/TS	Sea Level	204	6.1mx 6.1m x 6.1m	7 - 12
	DE	TB No 41	TJ	Sea Level	180	7.6mx 7.3m x 17.4m	
	DE	TB No 42	TJ	Sea Level	180	7.6mx 7.3m x 17.4m	
	DE	TB No 43	ТJ	Sea Level	180	7.6mx 7.3m x 17.4m	
	DE	TB No 44	ТJ	Sea Level	180	7.6mx 7.3m x 17.4m	
	HU	TB No 2	TJ	Sea Level	180	7.6mx 7.3m x 15.2m	
	BR	TP 108	TJ	Sea Level	170	7.0mx 7.0m x 21.0m	
	BR	TP 131 E	TJ	Sea Level	77	6.4mx 8.5m x 20.7m	
	BR	TP 125	ТJ	Sea Level	77	2.7mx 5.5m x 13.1m	
	DE	Hangar H	TS	Sea Level	1800	7.9mx 7.9m x 44 m	7 - 19
	DE	TB No 16	TS	Sea Level	26	5.2mx 5.2m x 22 m	
	DE	TB No 18	TS	Sea Level	26	5.2mx 5.2m x 22 m	
	HA	TB No 16	TS	Sea Level		7.6mx 4.9m x 11.6m	7 - 21
	HA	TB No 15	TS	Sea Level		2.Omx 4.9m x 8.2m	7 - 22
	HA	TB No 19	TS	Sea Level		2.Omx 4.9m x 8.2m	
	HA	TB No 12	TS	Sea Level		2.7mx 4.9m x 6.0m	7 - 23
	HA	TB No 13	TS	Sea Level		2.7mx 4.9m x 6.0m	7 - 23
	HA	TB No 13 A	TS	Sea Level		2.7mx 4.9m x 6.0m	7 - 23
	HA	TB No 20	TS	Sea Level		2.7mx 4.9m x 6.0m	
	HA	TB No 11	TS	Sea Level		5.1mx 4.9m	
	HA	TB No 21	TS	Sea Level		4.9mx 4.8m x 42.7m	7 - 25

NAME : Air Force Aero Propulsion Laboratory

ADDRESS : Wright-Patterson Air Force Base

Ohio 45433

USA

CONTACT : Technical Area Manager

AFWAL / POTC

Phone 513 - 255 - 2121

2 IEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size
Ramjet	TJ/RJ	16.8	109	
TC 21	TJ	15.2	109	Diam 3.0 m x 5.2 m
TC 24	TJ	15.2	109	Diam 3.7 m x 6.1 m
Sea Level	TJ	Sea L.	1045	13 m x 10 m x 27 m

1 ORGANISATION

NAME : AIR esearch Manufacturing Co.

Propulsion Engines Laboratory

ADDRESS : 20 000 Van Ness Avenue

Torrance, California, USA

CONTACT :

2 TEST_CELLS

Two sea level development test cells both accepting turbojet engines producing up to 111 kN thrust.

Test cell inner dimensions are 6.7 m x 7 m x 25.9 m

The test cells are equipped with the real time engine guard system (50 channels: 20 temperatures, 20 pressures, 6 frequencies, 4 misc.). and a data logging system (300 temperatures, 552 pressures, 36 differential pressures, 10 frequencies, and 60 miscellaneous). Also fully automatic control of engine testing is possible by T-PEC (taped program engine controller).

3 -

4 SUPPLEMENTARY INFORMATION

R. S. OLIVE Modern Jet Engine Development Facility
ASME Paper 71-WA/GT-6

ORGANISATION

NAME Arnold Engineering Development Center

ADDRESS Arnold Air Force Station

Tennessee 37389

AEDC/DOX CONTACT

TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size H W L	Page
PWT 16 S	TJ/RJ	47.2		4.9 m x 4.9 m x 12.2 m	6 - 1
ASTF C ₂ 1)	TJ/RJ	30.5	1250	Diam 8.5 m x 25.9 m	6 - 2
APTU	RJ	30.5	863	Diam 1.2 m x 12.8 m	6 - 3
ASTF C ₁ 1)	TJ/RJ	30.5	660	Diam 8.5 m x 25.9 m	6 - 2
PWT 16 T	TJ/RJ	27.5		4.9 m x 4.9 m x 12.2 m	6 - 6
J-1	TJ/RJ	24.4	636	Diam 4.9 m x 21.9 m	6 - 8
J-2	TJ/RJ	24.4	636	Diam 6.1 m x 21.0 m	6 - 9
T-1	TJ/RJ	24.4	363	Diam 3.7 m x 22.9 m	6 - 10
T-2	TJ/RJ/TS	24.4	363	Diam 3.7 m x 20.7 m	6 - 11
T-4	TJ/RJ	24.4	363	Diam 3.7 m x 16.8 m	6 - 12
T-6	TJ	24.4	170	Diam 0.9 m x 5.5 m	6 - 15
T-5	TJ/RJ	24.4	41	Diam 2.1 m x 5.2 m	6 - 17

AIR SUPPLY AND EXHAUST FACILITIES

The AEDC is comprised of various highly versatile facilities of which the following are relevant for this register:

- 1. Propulsion Wind Tunnel 16 Supersonic PWT 16 S 2. Propulsion Wind Tunnel 16 Transonic
- PWT 16 T
- 3. Aerodynamic and Propulsion Test Unit
 4. Engine Test Facility Basic (T-Cells)
 5. Engine Test Facility Addition (J-Cells)
 6. Aeropropulsion Systems Test Facility
 APTU
 ETF B
 AFTF

Each facility is equipped with its individual supply and exhaust system which may be linked to a certain extend in support of the test cells listed above.

3.1 SUPPLY

SUPPLI			air mass fi kg/s	low pressure kPa
Compressors	ETF-B	4 centrifugal (one stage)	82	275
	ETF-A	3 axial flow	02	213
	D.1	(one stage)	200	275
	ETF-A+		215	930
	ASTF	6 axial flow		
		(two stage)	500	1034
		(4 x 20.1 MW 2 x 39.1 MW)		
		(One stage)	660	27%
Storage	APTU	630 m ³ high pressure ning about 204.000 kg	air storage g at 27.6 MJ	reservoir contai- a
Heating	ETF-A	indirect fired heater maximum temperature air mass flow	t	672 K 227 kg/s
	ASTF	heat input to process	air	287.5 MW
	APTU	regenerative storage maximum matrix temper max. air mass flow vessel design pressur plus vitiated air hea	rature 1 re	366 K 116 kg/s 34.5 MPa

Cooling	ETF-B	continuous mech. refrigeration	3.33	MW
	ETF'-A	continuous mech. refrigeration	8.54	MW
	ASTF	electromechanical refrigeration plus five refrigeration turbines each 136 kg/s from 250 K to 195 K	28.7	MW

3.2 EXHAUST

		mass flo)W	pressure kPa	
ETF-B	<pre>6 centrifugal compressors 2 axial flow compressors</pre>	3 204	from	20.2	
ETF-A	2 axial flow compressors	} 204	TTOIII	30.3	
ASTF	8 axial flow compressors	136	from	4.1	
	(each 20.5 MW)	272	from	12.4	
	4 axial flow compressors				
	(each 32.8 MW)	1133	from	31.0	

(Suction capacity of PWT plenum evacuation compressors may be used for exhaust augmentation of ETF-B and ETF-A)

4. SUPPLEMENTARY INFORMATION

AEDC Test Facilities Handbook, June 1979

J.G. Mitchell The Airo-Propulsion Systems Test Facility AIAA-Paper No. 72-1034

 ${\tt J.R.}$ Rickard ${\tt Instrumentation}$ and Control for a Large Engine Test ${\tt M.W.}$ Lawley ${\tt Facility}$

to be found in Imaginative Engineering through Education and Experience. Proc. of the Southeast Region 3. Conference Williamsburg, Va. April 4-6, 1977, New York, Institute of Electrical and Electronics Engineers Inc. 1977, p 511-514

NAME : General Electric Co.

: Cincinnati, Ohio 45215 USA ADDRESS

CONTACT

2 TEST_CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size
TC-43	ТJ	24.4	454	Diam 5.2 m x 17.1 m
TC-44	TJ	24.4	182	Diam 5.2 m x 17.1 m

2

TEST CAPACITY OF ORGANISATIONS

ORGANISATION

General Motors Corporation Detroit Diesel Allison Division NAME

ADDRESS

2355 S. Tibbs Avenue Indianapolis, Indiana 46241 USA

CONTACT :

2 TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size
871-2	TS	20	54.5	Diam 6.1 m x 12.2 m
881	ТJ	15.2	190	Diam 5.5 m x 20.7 m
873	TJ/TS	13.7	45.4	Diam 4.3 m x 12.2 m
885	ТS	7.6	2.5	Diam 5.5 m x 14.6 m

ORGANISATION

NAME : The Johns Hopkins University Applied Physics Laboratory

: Laurel, Maryland 20810 USA ADDRESS

CONTACT

2 TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size H	W	L
TC-1	RJ	45.7	68	3.7 m	x 3 m x	12.2 m
TC-2	RJ	45.7	68	3.7 m	x 3 m x	12.2 m
TC-3	RJ	45.7	68	3.7 m	x 3 m x	12.2 m
TC-4	RJ	45.7	68	3.7 m	x 3 m x	12.2 m

TEST CAPACITY OF ORGANISATIONS 2

ORGANISATION

NAME : The Marquardt Co.

ADDRESS

: 16 555 Saticoy Street Van Nuys, California 91409

CONTACT

2 TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size			
TC-8	TJ/RJ	52	363	Diam 4.3 m	x	24.4	m
TC-2	TJ/RJ	24.4	182	Diam 3.0 m	x	18.3	m
TC-7	RJ			Diam 1.8 m	x	9.1	m

ORGANISATION

NAME National Aeronautics and Space Administration

Lewis Research Center

21 000 Brookpark Road Cleveland, Ohio 44 135 **ADDRESS**

USA

CONTACT :

TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size	Page
PSL-4	ТJ	21.3	340	Diam 7.3 m x 11.6 m	6-18
PSL-3	TJ	21.3	340	Diam 7.3 m x 11.6 m	6-18
PSL-1	TJ/RJ	21.3	204	Diam 4.3 m x 7.3 m	6-20
PSL-2	TJ/RJ	21.3	204	Diam 4.3 m x 7.3 m	6-20

3 AIR SUPPLY AND EXHAUST FACILITIES

SUPPLY	air	mass flo	w pressure kPa
	Central Supply System	217	414
		174	1138
		17.2	3206

Heating 2 J57 heat exchangers

127 kg/s to 922 K (max. pressure 1138 kPa)

Cooling turboexpanders

181 kg/s to 205 K

TEST CAPACITY OF ORGANISATIONS

ORGANISATION

: Naval Air Propulsion Center NAME

ADDRESS : P.O. Box 7176

Trenton, New Jersey 08628

USA

: Resource Management Officer CONTACT

Code RM

Phone 609-882-1414 Ext. 298 or 373

TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size H W L	Page
3 E	TJ/RJ	24.4	318	Diam 5.2 m x 9.1 m	6-13
2 E	TJ	24.4	195	Diam 4.4 m x 5.5 m	6-14
1 E	TJ	24.4	195	Diam 4.4 m x 5.5 m	6-14
3 W	TS	20.0	54.5	2.4 m x 2.4 m x 4.6 m	6-24
4 W	TS	20.0	54.5	Diam 3.0 m x 6.1 m	6-25
5 W	TS	20.0	54.5	2.9 m x 2.9 m x 5.2 m	6-26
6 W	TS	20.0	54.5	3.0 m x 3.0 m x 5.2 m	6-27
SLC 1 W	TJ/TS	Sea Level	159	4.3 m x 7.0 m x 17.1 m	7-13
SLC 2 W	TJ/TS	Sea Level	159	4.3 m x 7.0 m x 17.1 m	7-13
Var. Atti- tude Test Stand	TJ/TS	Sea Level	unlimited	Wing and Engine Center Line 1.5 ÷ 7.6 m above ground	7-3
Turntable Engine Stand	TJ/TS	Sea Level	unlimited		7-4

3 AIR SUPPLY AND EXHAUST FACILITIES

Ram air facility

Air heater Air cooler

Exhaust gas cooler Vacuum exhauster

Fixed exhaust diffuser (1 E/2 E)

Test cell refrigeration Liquid air cooling system (1 W/2 W)

1 ORGANISATION

NAME : Teledyne CAE/USAF Plant 27

ADDRESS : 1330 Laskey Road

Toledo, Ohio 43613

USA

CONTACT

2 TEST CELLS

Designation	Engine	Altitude km	Mass Flow kg/s	Size H	W	L
TC-1	ТJ	27.4	10(25) ¹⁾	0.8 m	x 1.2 m	x 2.1 m
TC-2	TJ	27.4	10(25) ¹⁾	0.8 m	x 1.2 m	x 2.1 m
Environmental Chamber	ТJ	Sea Level				
Cell 41	TJ	Sea Level	27			
nlus 8 additi	onal sea	level test	cells not r	orimarily	used f	or research

plus 8 additional sea level test cells not primarily used for research and development work.

3 AIR SUPPLY AND EXHAUST FACILITIES

SUPPLY

Four compressors each delivering 5 kg/s, pressure ratio 1.33. Compressors can be valved in series and parallel.

Two steam heaters each heating $\,$ 5 kg/s up to $\,$ 355/375 K (Electrical heater (TC-1 and TC-2) 540 KW max. discharge temperature 411 K)

One water cooler 5 kg/

5 kg/s to 267 K

Refrigeration system: total cooling capacity 530 kW (stage discharge temperature are 277/310 K, 275 K, 241 K, and 219 K)

EXHAUST

Exhaust gas water cooler (TC-1 and TC-2) 11.7 MW Fourteen vane type positive displacement vacuum pumps.

4 SUPPLEMENTARY INFORMATION

D.J. Fressie Teledyne CAE Small Gas Turbine Test Complex ASME Paper 71-WA/GT-7

¹⁾ mass flow if altitude does not exceed 4.6 km

2 TEST CAPACITIES OF ORGANISATIONS

ORGANISATION

NAME and ADDRESS : United Technologies Corporation

- 1 Pratt & Whitney Aircraft Division Government Products Division Florida Research and Development Center P.O. Box 2691
 - West Palm Beach, Florida 33402, USA
- 2 Pratt & Whitney Aircraft Division Commercial Products Division Andrew Willgoos Turbine Laboratory East Hartford, Connecticut 06 108, USA
- 3 Chemical Systems Division P.O. Box 458 Sunny vale, California, USA

2 TEST CELLS

Place	Designation	Engine	Altitude km	Mass Flow kg/s	Size Pag	је
FL	A - 1	TJ	simulated	114	6-3	37
FL	C - 4	TJ	simulated	55	6-3	38
FL	C - 5	TJ	simulated	55	6-3	38
FL	A - 2	ТJ	Sea L.			
FL	A - 8	TJ	Sea L.			
FL	C -10	ТJ	Sea L.			
CT	X -207	TJ	27.4	263	7 m	
CT	x -208	TJ	27.4	263	Diam 3.7 m \times 10.4 m	
CT	X -210	TJ	27.4	227	7.8 m	
CT	x -209	TJ	27.4	147.6	Diam 3.7 m \times 10.4 m	
CT	X -217	TJ	13.7	545	Diam 5.5 m x 10.7 m 6-3	32
CA	IRR-GTF	RJ	24.4	81.6	6-1	۱6

3. AIR SUPPLY AND EXHAUST FACILITIES

 Florida Research and Development Center no information available

2. Andrew Willgoos Turbine Laboratory

Power Supply:

o Six naval cruiser-type boilers producing 503 t/h steam at 3 MPa and 666 K i.e. about 102 MW.

Twenty-one steam turbines in the range of 4.4 - 29.4 MW

o Three P & W industrial gas turbines (type FT4A-8LF) each rated at 21 MW (3600 rpm) for 26.7°C - day, particularly used for driving six exhausters.

Ram Air Facility: o Thirteen air compressors (five different types of machines) to be operated in various combinations and delivering e. g. 265 kg/s at 304 kPa

60 kg/s at 847 kPa

o Air refrigeration system T ≥ 216 K

o Air heating system e.g. 265 kg/s up to 630 K

Exhaust:

Twelve centrifugal exhausters (32.3 m^3/s each) - eight exhausters may be used as compressors also. Six axial exhausters (133.6 m^3/s each).

3. Chemical System Division

Ram Air Supply: o Compressed air storage 13.600 kg air at 16.9 MPa

o Vitiated air heater

o Oxygen addition and control

Exhaust System

o Steam accumulator (34.000 kg of steam at a rate of 34 kg/s)

o Steam driven ejector

4. SUPPLEMENTARY INFORMATION

G. P. Adamson: Jet Engine Test Facilities: Laboratories for

Tomorrow's Engines
ASME Paper 71-WA/GT-12

T. D. Myers Ground Test Facility for Integral Rocket Ramjet Engines G. Stromberg

AIAA/SAE 14th Joint Propulsion Conference, Paper No. 78-934

Las Vegas, Nev., July 25 - 27, 1978

3 LIST OF ALTITUDE TEST CELLS

ENGINE JRJTS	ALTITUDE KM	MACH RANGE	MAX.MASS FLOW RATE KG/S	TEST FACILI DESIGNATION		ORGANISATION NAME	PAG
хх	52	0.8-8.2	363	TC-8		MAR	2-2
хх	13.7-47.2	1.5-4.75		PWT 16 S	6-1	AEDC	2-2
x	45.7	1 -10	68	TC-1		JHU-APL	2-2
ж	45.7	1 -10	68	TC-2		JHU-APL	2-2
x	45.7	1 -10	68	TC-3		JHU-APL	2-2
x	45.7	1 -10	68	TC-4		JHU-APL	2-2
c x	30.5	0 - 3.8	1,250	ASTF C 2	6-2	AEDC	2-2
x	30.5	0 - 5.6	863	APTU	6-3	AEDC	2-2
κх	30.5	0 - 3.8	660	ASTF C 1	6-2	AEDC	2-2
x	30.0	0 - 3.5	270	ATF Cell 4	6-4	NGTE	2-1
×	30.0	0 - 3.5	180	ATF Cell 1	6-5	NGTE	2-1
×	27.5	0.2-1.5		PWT 16 T	6-6	AEDC	2-2
:	27.4	0 - 3.0	263	x-207		P & W - AW	2-3
	27.4	0 - 3.0	263	x-208		P & W - AW	2-3
	27.4	0 - 3.0	227	X-210		P & W - AW	2-3
x	27.4	0 - 4.2	182	TP 131 A	6-7	RR-BR	2-1
	27.4	0 ~ 3.0	147.6	X-209		P & W - AW	2-3
	27.4	0 ~ 2.0	10	TC-1		TE-CAE	2-2
	27.4	0 ~ 2.0	10	TC-2		TE-CAE	2-2
x	24.4	0 - 3.3	636	J-1	6-8	AEDC	2-2
x	24.4	0 - 3.3	636	J-2	6-9	AEDC	2-2
	24.4	0 - 3.0	454	TC-43		GE	2-2
x	24.4	0 - 3.0	363	T-1	6-10	AEDC ,	2-2
х х	24.4	0 - 3.0	363	T-2	6-11	AEDC	2-2
x	24.4	0 - 3.0	363	T-4	6-12	AEDC	2-2
x	24.4	0 - 3.0	318	3 E	6-13	NAPC	2-2
	24.4	0 - 2.4	195	2 E	6-14	NAPC	2-2
	24.4	0 - 2.4	195	1 E	6-14	NAPC	2-2
x	24.4	0.8-5.0	182	TC-2		MAR	2-2
	24.4	0 - 3.0	182	TC-44		GE	2-2
	24.4	0 - 3.0	170	T-6	6-15	AEDC	2-2
x	24.4		81.6	IRR-GTF	6-16	UT -CSD	2-30
x	24.4	0 - 1.5	41	T-5	6-17	AEDC	2-2
	21.3	0 - 4.0	340	PSL-4	6-18	NASA-LE	2-2
	21.3	0 - 3.0	340	PSL-3	6-18	NASA-LE	2-2
x	21.3	0 ~ 2.5	272	ATF Cell 1	6-19	RR-DE	2-19
	21.3	0 - 2.5	272	ATF Cell 2	6-19	RR-DE	2-19
X	21.3	0 - 3.0	204	PSL-1	6-20	NASA-LE	2-27
x	21.3	0 - 3.0	204	PSL-2	6-20	NASA-LE	2-2
	20.0	0 - 4.0	375	R 5	6-21	CEPr	2-7
	20.0	0 - 2.4	200	R 3	6-22	CEPr	2-7
	20.0	0 - 2.4	200	R 4	6-22	CEPr	2-7
х х	20.0	0 - 2.2	70	HPT	6-23	US-ILA	2-11
х	20.0	0 - 1.0	54.5	871-2		DDAD	2-24
X	20.0		54.5	3 W	6-24	NAPC	228
x	20.0		54.5	4 W	6-25	NAPC	2-28
X	20.0		54.5	5 W	6-26	NAPC	2-28
x	20.0		54.5	6 W	6-27	NAPC	2-28

3 LIST OF ALTITUDE TEST CELLS

	ENGINE JRJTS	ALTITUDE KM	MACH RANGE	MAX.MASS FLOW RATE KG/S	TEST FACILITY DESIGNATION		ORGANISATION NAME	PAGE
x	x	19.0	0 - 3.5	270	ATF Cell 3	6-28	NGTE	2-16
×		18.0	subsonic	630	ATF Cell 3 W	6-29	NGTE	2-16
х	x	17.0	0 - 2.5	180	ATF Cell 2	6-30	NGTE	2-16
x	x	16.8		109	Ramjet		AFAPL	2-20
x		15.2	0 - 1.0	190	881		DDAD	2-24
x		15.2	0 - 1.5	109	TC 21		AFAPL	2-20
x		15.2	0 - 1.5	109	TC 24		AFAPL	2-20
x	х х	15.0	0 - 2.0	100	s 1	6-31	CEPr	2- 7
x		13.7	0 - 1.0	545	X-217	6-32	P & W - AW	2-30
x	x	13.7	0 - 1.0	45.4	873		DDAD	2-24
x	x	13.7		5.4	ALT.FAC.	6-33	NRC	2- 3
x	(x)	11.0 (5.6)	0 - 1.0	55	C 1	6-34	CEPr	2- 7
x	×	10.0	0.1-1.0		R 2	6-35	CEPr	2- 7
×	×	10.0	0.1-1.0		R 6	6-36	CEPr	2- 7
	x	7.6	<1.0	2.5	885		DDAD	2-24
	×				TC-7		MAR	2-26
×					A-1	6-37	P & W - FL	2-30
x					C-4	6−3₺	P & W - FL	2-30
x					C-5	6-38	P & W - FL	2-30

Unlimited	SHAFT P. KN/KW 310 kN 222 kN 222 kN 222 kN 180 kN 2×90kN 90(45) 1) k 445 kN 334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN 310 kN	ag 5.8	DESIGNATION TB No 9 METS A+B Var.Attitude Stand Turntable Engine Stand TX TB No 5 TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-4	NAME RR-HU RR-BR NAPC NAPC CEPT RR-HU RR-HU SNECMA SNECMA P&W-FL P&W-FL NRC	PAG 2-1 2-1 2-2 2-2 2-7 2-1 2-8 2-8 2-3 2-3
Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited 1300 1200 1045 1000 1000	222 kN 222 kN 222 kN 180 kN 2x90kN 90(45) 1) k 445 kN 334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	5.1/5.3/5.8 5.4/5.8/5.10 5.3/5.12 5.2 5.2/5.5/5.10 N 5.3/5.5 5.7 5.8 ft	METS A+B Var.Attitude Stand Turntable Engine Stand TX TB No 5 TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-2 = 7-3 7-4 1 7-5 7-6 7-7	RR-BR NAPC NAPC CEPr RR-HU RR-HU SNECMA SNECMA P&W-FL P&W-FL	2-1 2-2 2-2 2-7 2-1 2-1 2-8 2-8 2-3 2-3
Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited 1300 1200 1045 1000 1000	222 kN 222 kN 180 kN 2×90kN 90(45) 1) k 445 kN 334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	5.4/5.8/5.10 5.3/5.12 5.2 5.2/5.5/5.10 N 5.3/5.5 5.7 5.8 ft	Var.Attitude Stand Turntable Engine Stand TX TB No 5 TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-4 7-5 7-6 7-7	NAPC NAPC CEPr RR-HU RR-HU SNECMA SNECMA P&W-FL P&W-FL	2-2 2-2 2-7 2-1 2-1 2-8 2-8 2-3
Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited Unlimited 1300 1200 1045 1000 1000	222 kN 180 kN 2x90kN 90(45) 1) k 445 kN 334 kN 20 kN L1 10 kN Dr 250 kN 267 kN 310 kN	5.3/5.12 5.2 5.2/5.5/5.10 N 5.3/5.5 5.7 5.8 ft	Stand Turntable Engine Stand TX TB No 5 TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-4 3 7-5 7-6 7-7	NAPC CEPT RR-HU RR-HU SNECMA SNECMA P&W-FL P&W-FL	2-2 2-7 2-1 2-1 2-8 2-8 2-3
Unlimited Unlimited Unlimited Unlimited Unlimited Vnlimited 1300 1200 1045 1000 1000	180 kN 2x90kN 90(45) 1) k 445 kN 334 kN 20 kN L1 10 kN Dr 250 kN 267 kN 310 kN	5.2 5.2/5.5/5.10 N 5.3/5.5 5.7 5.8 ft	Engine Stand TX TB No 5 TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-5 7-6 7-7	CEPT RR-HU RR-HU SNECMA SNECMA P&W-FL P&W-FL	2-7 2-1 2-1 2-8 2-8 2-3 2-3
Unlimited Unlimited Unlimited Unlimited Valiable 1300 1200 1045 1000 1000	2x90kN 90(45) ¹⁾ k 445 kN 334 kN 20 kN L1 10 kN Dr 250 kN 267 kN 310 kN	5.2/5.5/5.10 N 5.3/5.5 5.7 5.8 ft ag	TB No 5 TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-6 7-7	RR-HU RR-HU SNECMA SNECMA P&W-FL P&W-FL	2-1 2-1 2-8 2-8 2-3 2-3
Unlimited Unlimited Unlimited 1300 1200 1045 1000 1000	90(45) ¹⁾ k 445 kN 334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	5.7 5.8 ft ag	TB No 7 ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-7	RR-HU SNECMA SNECMA P&W-FL P&W-FL	2-1 2-8 2-8 2-3 2-3
Unlimited Unlimited 1300 1200 1045 1000 1000	445 kN 334 kN 20 kN L1 10 kN Dr 250 kN 267 kN 310 kN	5.7 5.8 ft ag 5.8	ISite No 3 I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF		SNECMA SNECMA P&W-FL P&W-FL	2-8 2-8 2-3 2-3
Unlimited 1300 1200 1045 1000 1000	334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	5.8 ft ag 5.8	I " No 5 A-8 C-10 Propulsion Tunnel T 1 SLETF	7-8	SNECMA P&W-FL P&W-FL	2-8 2-3 2-3
1200 1045 1000 1000	334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	5.8 ft ag 5.8	A-8 C-10 Propulsion Tunnel T 1 SLETF	7-8	P&W-FL P&W-FL	2-3 2-3
1200 1045 1000 1000	334 kN 20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	5.8 ft ag 5.8	C-10 Propulsion Tunnel T 1 SLETF	7-8	P&W-FL	2-3
1200 1045 1000 1000	20 kN Li 10 kN Dr 250 kN 267 kN 310 kN	ft ag 5.8	Propulsion Tunnel T 1 SLETF			
1200 1045 1000 1000	10 kN Dr 250 kN 267 kN 310 kN 310 kN	ag 5.8	Tunnel T 1 SLETF		NRC	2-3
1045 1000 1000	267 kN 310 kN 310 kN		SLETF			
1000 1000	310 kN 310 kN				CEPr	2-
1000	310 kN		·- · · ·		AFAPL	2-2
			TB No 48		RR-DE	2-
907	310 kn	5.8	TB No 49		RR-DE	2-
		5.2/5.5	TB No 10		RR-HU	2-
	267 kN		A-2		P&W-FL	2-
	180 kN		No 3 TB		RR-CA	2÷
536	178 kN	5.8	TP 105	7-10	RR-BR	2-
536	178 kN	5.8	TP 137	7-10	RR-BR	2-
500			W 1 C 7		SNECMA	2-
500			w 1 H 8		SNECMA	2-
454	98 kN	5.11	TP 107		RR-BR	2-
400			W 2 C 7		SNECMA	2-
400	100 kN		Cell No 6		FIAT	2-
304	98 kn	5.11	TP 103		RR-BR	2-
304	98 kN	5.11	TP 104		RR-BR	2-
272	222 kN	5.7	TP 140		RR-BR	2-
272	222 kN	5.7	TP 141		RR-BR	2-
	222 kN		5-11	7-11	P&W-AC	2-
250 ²⁾	80 kn		ETB No 1		MTU	2-
250 ²⁾	80 kN		ETB No 2		MTU	2-
227	22 kN		1-16 / 1-17		P&W-AC	2-
204	133 kN		TB No 8	7-12	RR-HU	2-
200	190 kN		Glen Test Ho	ouse	NGTE	2-
200			W 11 H 7		SNECMA	2-
180	130 kN	5.11	TB No 41		RR-DE	2-
180	130 kN	5.11	TB No 42		RR-DE	2-
180	130 kN	5.11	TB No 43		RR-DE	2-
180	130 kN	5.11	TB No 44		RR-DE	2-
180	90 kN	5.8	TB No 2		RR-HU	2-
100	222 kN	5.11	TP 108		RR-BR	2-
170	133 kN	5.1/5.9	SLC 1 W	7-13	NAPC	2-
	133 kN	5.1/5.9	SLC 2 W	7-13	NAPC	2-
	204 200 200 180 180 180 180 180	204 133 kN 200 190 kN 200 180 130 kN 180 130 kN 180 130 kN 180 90 kN 170 222 kN 159 133 kN	204 133 kN 200 190 kN 200 180 130 kN 5.11 180 130 kN 5.11 180 130 kN 5.11 180 130 kN 5.11 180 90 kN 5.8 170 222 kN 5.11 159 133 kN 5.1/5.9	204 133 kN TB No 8 200 190 kN Glen Test Ho 200 W 11 H 7 180 130 kN 5.11 TB No 41 180 130 kN 5.11 TB No 42 180 130 kN 5.11 TB No 43 180 130 kN 5.11 TB No 43 180 130 kN 5.11 TB No 44 180 90 kN 5.8 TB No 2 170 222 kN 5.11 TP 108 159 133 kN 5.1/5.9 SLC 1 W	204 133 kN TB No 8 7-12 200 190 kN Glen Test House 200 W 11 H 7 180 130 kN 5.11 TB No 41 180 130 kN 5.11 TB No 42 180 130 kN 5.11 TB No 43 180 130 kN 5.11 TB No 43 180 130 kN 5.11 TB No 44 180 90 kN 5.8 TB No 2 170 222 kN 5.11 TP 108 159 133 kN 5.1/5.9 SLC 1 W 7-13 159 133 kN 5.1/5.9 SLC 2 W 7-13	204 133 kN TB No 8 7-12 RR-HU 200 190 kN Glen Test House NGTE 200 W 11 H 7 SNECMA 180 130 kN 5.11 TB No 41 RR-DE 180 130 kN 5.11 TB No 42 RR-DE 180 130 kN 5.11 TB No 43 RR-DE 180 130 kN 5.11 TB No 44 RR-DE 180 90 kN 5.8 TB No 2 RR-HU 170 222 kN 5.11 TP 108 RR-BR 159 133 kN 5.1/5.9 SLC 1 W 7-13 NAPC 159 133 kN 5.1/5.9 SLC 2 W 7-13 NAPC

¹⁾ Reverse thrust 2) Exhaust 700

4 LIST OF SEA LEVEL TEST FACILITIES

EN	GINE	MASS FLOW	THRUST/	SPECIAL	TEST FACILITY	TEST FACILITY		
TJ	RJ TS	KG/S	SHAFT-P. KN/KW	CAPABILITY SECTION	DESIGNATION	PAGE	NAME	PAG
x			111 kN				AIRes.	2-2
x			111 kN				AIRes.	2-2
x		100	80 kN	5.2/5.4	Field	7-14	MTU	2-1
x		100			W 9 H 7		SNECMA	2-8
x		100			W 10 H 7		SNECMA	2-8
x		100			W 12 H 7		SNECMA	2-8
x		100			W 7 H 5		SNECMA	2-8
x		100			W 8 H 5		SNECMA	2~8
	x	90	10 kN	5.4	VMK	7-15	DFVLR	2~9
x			67 kN		No 2 TB		RR-CA	2-5
x			67 kN		Honiley		LUCAS	2~1
x		77	36 kN	5.12	TP 131 E		RR-BR	2-1
x		77		5.12	TP 125		RR-BR	2-1
x		27			Cell 41		TE-CAE	2~2
x				5.9	Env. Chamber		TE-CAE	2-2
x		15.2			No 1 TC		NRC	2-3
x		15.0		5.1	No 4 TC	7-16	NRC	2-3
x		5.0			ETB No 9		MTU	2-1
x	×			5.9	1-11 A	7-17	P&W-AC	2-4
x	x		2 kN 2000 kW	5.4	н 9	7-18	CEPr	2-7
	ж		29 MW		Gas Turbine Test Fac.		WE-CA	2-6
	×		8950 kW		2-3		P&W-AC	2-4
	×	1800	6600 kW	5.6	Hangar H	7-19	RR-DE	2-1
	x	26	6600 kW	5.12	TB No 16		RR-DE	2-1
	×	26	6600 kW	5.12	TB No 18		RR-DE	2-1
	x		3900 kW		No 1 TB		RR-CA	2-5
	5 x		60-2575 ki	N			NPT	2-1
	×		2200 kW	5.6	т 64	7-20	RR-CA	2-5
	x		1840 kW		2-1		P&W-AC	2-4
	x		1840 kW		1-5		P&W-AC	2-4
	x		1840 kW		TB No 16	7-21	RR-HA	2-1
	x	8.2	1765 kW		1-2		P&W-AC	2-4
	x	5.0	1470 kW		No 2 TC		NRC	2-3
	×		1470 kW	5.7	TB No 15	7-22	RR-HA	2~1
	×		1470	5.12	TB No 19		RR-HA	2-1
	×		1100 kW	5.7	TB No 12	7-23	RR-HA	2-1
	×		1100 kW	5.7	TB No 13/13A	7-23	RR-HA	2-1
	x		1100 kW		TB No 20		RR-HA	2-1
	×	385	956 kW	5.6	1 – 1	7-24	P&W-AC	2-4
	×	385	956 kW	5.6	1-6	7-24	P&W-AC	2-4
	×	385	956 kW	5.6	1-18	7-24	P&W-AC	2-4
	×	385	956 kW	5.6	2-4	7-24	P&W-AC	2-4
	×		956 kW		Dynamometer T.B.		AR	2-1
	×		735 kW	5.12	TB No 11		RR-HA	2-19
	×	31	662 kW	5.6	TB No 21	7-25	RR-HA	2-19
	x	2.53)	660 kW		ETB No 3		MTU	2-10

4 LIST OF SEA LEVEL TEST FACILITIES

ENGINE	MASS FLOW	FLOW THRUST/ SHAFT-P.	SPECIAL CAPABILITY	TEST FACILIT	TEST FACILITY		ORGANISATION	
TJ RJ TS	KG/S	KN/KW	SECTION	DESIGNATION	PAGE	NAME	PAGE	
x	3	660 kW		ETB No 6		MTU	2-10	
×	2.54)	500 kW				CC-AMPD	2-2	
x		400 kW		ETB No 4		MTU	2-10	
x		309 kW				EM	2-13	
x	4.5	220 kW	5.1/5.2/5.3 5.8/5.12	PASTF	7-26	PL	2-18	
x	2	180 kW		ETB No 7		MTU	2-10	
×						CU-GTL	2-1	
x			5.6	Hangar TB	7-27	AR	2-12	
x				Cell No 9		FIAT	2-14	

⁴⁾ Exhaust 6.0

5 LIST OF TEST FACILITIES WITH SPECIAL CAPABILITIES

TYPE OF ENGINE	ALTITUDE	MASS FLOW	THRUST/ SHAFT-P.	TEST FACILI	TEST FACILITY		ION
	KM	KG/S	kN/kW	DESIGNATION	PAGE	NAME	PAG
5.1 I	CING						
TJ/RJ	24.4	636		J-1	6-8	AEDC	2~2
TJ/RJ	24.4	318	222 kN	3-E	6-13	NAPC	2-2
ТJ	24.4	195	133 kN	2-E	6-14	NAPC	2-2
ТJ	24.4	195	133 kN	1-E	6-14	NAPC	2-2
TJ	19.0	270	220 kN	ATF Cell 3	6-28	NGTE	2-1
ТJ	18.0	630	220 kN	ATF Cell 3W		NGTE	2-1
TJ/TS	10.0			R 2	6-35	CEPr	2~7
TJ	Sea L.	Unlimited	222 kN	METS A+B	7-2	RR-BR	2~1
TJ/TS	Sea L.	159	133 kN	SLC 1 W	7-13	NAPC	2~2
TJ/TS	Sea L.	159	133 kN	SLC 2 W	7-13	NAPC	2-2
TJ	Sea L.	15		No 4 TC	7-16	NRC	2~3
TS	Sea L.	4.5	220 kW	PASTF	7-16	PL	2-3
					,		
TJ	Sea L.	Unlimited	310 kN	TB No 9	7-1	RR-HU	2-1
ТJ	Sea L.	Unlimited	222 kN	METS A+B	7-2	RR-BR	2-1
TJ/TS	Sea L.	Unlimited	180 kN	Тx	7-5	CEPr	2-7
TJ/TS	Sea L.	Unlimited	2x90 kN	TB No 5	7-6	RR-HU	2-1
TJ	Sea L.	907	310 kN	TB No 10	7-9	RR-HU	2-1
TJ	Sea L.		222 kN	5-11	7-11	P & W-AC	2-4
TJ	Sea L.	100	80 kN	Field	7-14	MTU	2-1
TS	Sea L.	4.5	220 kW	PASTF	7-26	\mathtt{PL}	2-1
5.3 N C	DISE						
TJ	Sea L.	Unlimited	310 kN	TB No 9	7-1	RR-HU	2-19
TJ	Sea L.	Unlimited	222 kN	METS A+B	7-2	RR-BR	2-19
Tj/TS	Sea L.	Unlimited	222 kN	Turntable Eng.Stand	7-4	NAPC	2-28
TJ/TS	Sea L.	Unlimited	90 kN	TB No 7	7-7	RR~HU	2-19
TS	Sea L.	4.5	220 kW	PASTF	7-26	PL	2-18
•							
5.4 A 7	TITUD	E (ENGINE	INCIDENCE AND	YAW VARIATION)			
TJ	30.0	720	220 kN	ATF Cell 4	6-4	NGTE	2-16
TJ/TS	Sea L.	Unlimited	222 kN	Var.Attitu- de Stand		NAPC	2-28
			_				
TJ	Sea L.	100	80 kN	Field	7-14	MTU	2-10
Tj Rj	Sea L. Sea L.	100 90	80 kN 10 kN	Field VMK	7-14 7-15	MTU DFVLR	2-10 2-9

5 LIST OF TEST FACILITIES WITH SPECIAL CAPABILITIES

TYPE OF ENGINE	ALTITUDE	MASS FLOW	THRUST/ SHAFT-P.	TEST FACILI	TY	ORGANISATION	
ENGINE	KM	KG/S	KN7KW	DESIGNATION	PAGE	NAME	PAGE
5.5 I N	NTAKE (СОМРАТТ	BILITY/O	TROSS W	IND		
<u> </u>	VIAKE .	COMPAII	<u> </u>	<u> </u>	1 10 1		
TJ	Sea L.	Unlimited	310 kN	TB No 9	7-1	RR-HU	2-19
TJ/TS	Sea L.	Unlimited	2 x 90 kN	TB No 5	7-6	RR-HU	2-19
TJ/TS	Sea L.	Unlimited	90 kN	TB No 7	7-7	RR-HU	2-19
TJ	Sea L.	907	310 kN	TB No 10	7-9	RR-HU	2-1
5.6 T S	S-ENGI	NE WITH	PROPELI	LER			
TS	Sea L.	1800	6600 kW	Hangar H	7-19	RR-DE	2-1
TS	Sea L.		2200 kW	т 64	7-20	RR-CA	2-5
TS	Sea L.	385	956 kW	1-1	7-24	P&W-AC	2-4
TS	Sea L.	385	956 kW	1-6	7-24	P&W-AC	2-4
TS	Sea L.	385	956 kW	1-18	7-24	P&W-AC	2-4
TS	Sea L.	385	956 kW	2-4	7-24	P&W-AC	2-4
TS	Sea L.		662 kW	TB No 21	7-25	RR-HA	2-1
TS	Sea L.			Hangar TB	7-27	AR	2-1
5.7 P	REHEAT	ED AIR/	HEATED	INLET			
ТJ	Sea L.		445 kN	A-8	7-8	P&W-FL	2-3
ТJ	Sea L.	272	222 kN	TP 140		RR-BR	2-1
TJ	Sea L.	272	222 kN	TP 141		RR-BB	2-1
TS	Sea L.		1470 kW	TB No 15	7-22	RR-HA	2-1
TS	Sea L.		1100 kW	TB No 12	7-23	RR-HA	2-1
TS	Sea L.		1100 kW	TB No 13	7-23	RR-HA	2-1
TS	Sea L.		1100 kW	TB No 13 A	7-23	RR-HA	2-1
	ECTORE	D AND R	EVERSE	r H R U S T /	JET	DEF	LEC
<u>T</u> :	ION						
TJ/TS	Sea L.	Unlimited	222 kN	Var.Atti- tude Stand	7-3	NAPC	2-2
ŤJ	Sea L.	1000	310 kn	TB No 48		RR-DE	2-1
TJ	Sea L.	1000	310 kN	TB No 49		RR-DE	2-1
TJ	Sea L.		334 kN	C-10		P&W-FL	2-3
ŤJ	Sea L.	536	178 kn	TP 105	7-10	RR-BR	2-1
TJ	Sea L.	536	178 kN	TP 137	7-10	RR-BR	2-1
TJ	Sea L.	180	90 kn	TB No 2		RR-HU	2-1
TS	Sea L.	4.5	220 kW	PASTF	7-26	PL	2-1
5.9 C	OLD ST	ART					
TJ/TS	Sea L.	204	133 kN	TB No 8	7-12	RR-HU	2-1
TJ/TS	Sea L.	159	133 kN	SLC 1 W ¹⁾	7-13	NAPC	2-2
m T/mc	Sea L.	159	133 kN	$SLC 2 W^{1)}$	7-13	NAPC	2-21
TJ/TS							
TJ/TS	Sea L.			1-11 A	7-17	P&W-AC	2-4

5 LIST OF TEST FACILITIES WITH SPECIAL CAPABILITIES

ENGINE			THRUST/ SHAFT-P.	TEST FACILITY		ORGANI	
	KM	KG/S	KN/KW	DESIGNATION	PAGE	NAME	PAG
5.10 T	WIN-EN	GINE					
TJ/TS	Sea L.	Unlimited	222 kN	Var.Attitu- de Stand	7-3	NAPC	2-2
TJ/TS	Sea L.	Unlimited	2x90 kN	TB No 5	7-6	RR-HU	2-
TS	Sea L.		1840 kW	TB No 16	7-21	RR-HA	2-
5.11 R	ЕНЕАТ						
TJ	Sea L.	454	98 kN	TP 107		RR-BR	2-
TJ	Sea L.	304	98 kN	TP 103		RR-BR	2-
TJ	Sea L.	304	98 kN	TP 104		RR-BR	2-
TJ	Sea L.	180	130 kN	TB No 41		RR-DE	2-
ТJ	Sea L.	180	130 kN	TB No 42		RR-DE	2-
TJ	Sea L.	180	130 kN	TB No 43		RR-DE	2-
TJ	Sea L.	180	130 kN	TB No 44		RR-DE	2-
ТJ	Sea L.	170	222 kN	TP 108		RR-BR	2-
5.12 O X - RAY	THER S	PEC. CA	<u>P.</u>				
	Sea L.	Unlimited	910 kN	TB No 9	7-1	RR-HU	2~
X - RAY				TB No 9	7-1	RR-HU	2~
X - RAY	Sea L.			TB No 9 Turntable Eng.Stand	7-1 7-4	RR-HU NAPC	2
X - RAY TJ INFRA-REI	Sea L. D SIGNATURE Sea L.	Unlimited	310 kN	Turntable			
X - RAY TJ INFRA-REI TJ/TS	Sea L. O SIGNATURE Sea L.	Unlimited	310 kN	Turntable			2~.
X - RAY TJ INFRA-REI TJ/TS VIBRATION	Sea L. D SIGNATURE Sea L. N Sea L.	Unlimited Unlimited	310 kN 222 kN	Turntable Eng.Stand	7-4	NAPC	2-
X - RAY TJ INFRA-REI TJ/TS VIBRATION	Sea L. D SIGNATURE Sea L. N Sea L.	Unlimited Unlimited	310 kN 222 kN	Turntable Eng.Stand	7-4	NAPC	2-
X - RAY TJ INFRA-REI TJ/TS VIBRATION TS SPOOL TES	Sea L. D SIGNATURE Sea L. N Sea L.	Unlimited Unlimited 4.5	310 kN 222 kN 220 kW	Turntable Eng.Stand PASTF	7-4	NAPC PL	2
X - RAY TJ INFRA-REI TJ/TS VIBRATION TS SPOOL TES	Sea L. Sea L. Sea L. Sea L. Sting Sea L. Stea L. Sea L.	Unlimited Unlimited 4.5	310 kN 222 kN 220 kW	Turntable Eng.Stand PASTF TP 131 E	7-4	NAPC PL RR-BR	2-
X - RAY TJ INFRA-REI TJ/TS VIBRATION TS SPOOL TES TJ TJ	Sea L. Sea L. Sea L. Sea L. Sting Sea L. Stea L. Sea L.	Unlimited Unlimited 4.5	310 kN 222 kN 220 kW	Turntable Eng.Stand PASTF TP 131 E	7-4	NAPC PL RR-BR	2- 2- 2-
X - RAY TJ INFRA-REI TJ/TS VIBRATION TS SPOOL TES TJ TJ DYNAMOMES	Sea L. Sea L. Sea L. Sea L. Sting Sea L. Sea L. Sea L.	Unlimited Unlimited 4.5 77 77	310 kN 222 kN 220 kW	Turntable Eng.Stand PASTF TP 131 E TP 125	7-4	NAPC PL RR-BR RR-BB	
X - RAY TJ INFRA-REI TJ/TS VIBRATION TS SPOOL TES TJ TJ DYNAMOMET	Sea L. Sea L. Sea L. Sea L. STING Sea L. Sea L. Sea L. Sea L.	Unlimited Unlimited 4.5 77 77	310 kN 222 kN 220 kW 36 kN	Turntable Eng.Stand PASTF TP 131 E TP 125 TB No 16	7-4	NAPC PL RR-BR RR-BB	2 2- 2- 2-

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

13.7 - 47.2

1.5 - 4.75

FLIGHT MACH NO

1 IDENTIFICATION

ORGANISATION

LOCATION Arnold

TEST CELL DESIGNATION

AEDC Arnold Engineering

Air Force Station

PWT 16 S

Development Center

Tennessee USA

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Free Jet

Accepts engines with

(closed loop wind tunnel)

cowling full scale and

in missiles

SIZE :

WIDTH 4.88 m

HEIGHT 4.88 m DTAM LENGTH 12.20 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

PRESSURE

MASS FLOW

kg/s

kPa

2.9 - 23.4 (operating range of stagnation press.)

TEMPERATURE

322 - 600

(operating range of stagnation temp.)

Mach-No - Flight Height Range 13.7 - 22 1.5 km 2.4

20.7 - 33.5 km 30.5 - 45.7 km 3.4 41.1 - 47.2 km 4.75

TRANS IENTS

1.5 - 2.4 2.4 - 4.75% 0.05 Mach/minute Mach No Mach No 0.14 Mach/minute

"changes beyond 4.5 require three five minutes tape changes at M = 3.7

The PWT comprises two separate Windtunnels 16 T (transonic) and 16 S (supersonic) Both tunnels employ the same set of two induction (25 and 18 MW) and two synchronous motors (each 61 MW) for driving their separate compressor sets. They are primarily designed for various aerodynamic tests but both have systems to remove engine exhaust gases from the tunnel and replace with clean air. Typical testing of air-breathing engines includes the following:

- 1) engine-inlet matching involving changes in pressure recovery and distribution with model altitude and engine power
- 2) propulsion nozzle and afterbody characteristics
- 3) variable geometry performance in inlet and nozzles
- 4) control systems interactions and response characteristics for complete propulsion systems
- 5) heat-transfer studies of cooling systems including auxiliary inlets and of internal cooling effectiveness

The aim is usually a combined systems test i.e. propulsion and aerodynamics, and not engine performance. Therefor correct simulation of flight conditions is dispensable and some mismatch of stagnation temperature is tolerated.

Both tunnels are equipped with flexible wall Laval-type nozzles leading into 4.88 m x 4.88 m quadratic test sections of up to 12 m length. Test section and +)

PUBLICATION ETC

AEDC Test Facilities Handbook, June 1979

+) Continued on Page 8-2, Appendix II

3 CONTACT : Arnold Engineering Development Center AEDC/DOX

Arnold Air Force Station Tennessee 37389

USA

30.5 ALTITUDE (MAX. NOMINAL) k m ALTITUDE TEST CELLS 6 FLIGHT MACH NO - 3.8 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION AEDC Arnold ASTE C 1 Arnold Engineering Air Force Station and Development Center Tennessee ASTF C 2 USA 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbo-Jet Free Jet Ram-Jet Direct Connect SIZE : WIDTH HEIGHT 8.53 m 25.9 m DIAM LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY C 1 and C 2 MASS FLOW 1250 660 500 kq s (with atmospheric 276 896 PRESSURE kPa inbleed) TEMPERATURE 200 - 822C 1 C 2 EXHAUST 1250 660 1135 almost linearly 136 MASS FLOW ka/s 31 decreasing to 70 PRESSURE kPa TEMPERATURE as from engine delivered Full flight environment and engine power transients TRANS IENTS 227 kg/s^2 Mass Flow Rate 2.76 kPa/s Inlet Pressure Inlet Temperature 2.2 K/s Both cells are part of an open-circuit facility designed primarily for testing air-breathing engine propulsion systems in an optimised free-jet test mode. It is possible to produce transient rate-of-change necessary to follow both flight environment and engine power transients. Three nozzles are available permitting test up to Mach.7 with jet cross section of 9.3 $\rm m^2$, up to 1.0 with 5.6 $\rm m^2$ and up to 3.8 with 4.2 $\rm m^2$ MEASURING **EQUIPMENT** o 1700 "static" measurements (typically < 1 kHz) including 600 pneumatic multiplex 1020 electrical multiplex o 226 "dynamic" measurements up to 20 kHz including 24 channels up to 50 kHz 12 channels up to 100 kHz DATA ACQUISITION AND PROCESSING Mass Data Storage Facility (MDSF) and Executive Data Processing System (EDPS). EDPS accomplishes major performance calculations in real time with testing activities. An extensive interactive display system, both alpha-numeric and graphic terminals, is provided. PUBLICATION ETC J.G. MITCHELL The Aero-Propulsion Systems Test Facility AIAA Paper No 72-1034, 1972 3 CONTACT : Arnold Engineering Development Center AEDC/DOX Arnold Air Force Station Tennessee 37389, USA

kn:

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

30.5

FLIGHT MACH NO

up to 5.6

1 IDENTIFICATION

ORGANISATION

LOCATION Arnold

TEST CELL DESIGNATION

APTU

AEDC Arnold Engineering Development Center

Air Force Station

Tennessee

USA

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Ram-Jet

Free Jet

Direct Connect

Test Section

1.22 m

LENGTH 12.8 m

SIZE : WIDTH

HEIGHT Test Cell DIAM 4.88 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 863

PRESSURE

kPa

2070 (stagnation)

TEMPERATURE

1111 (stagnation)

EXHAUST

MASS FLOW

kg/s

PRESSURE TEMPERATURE kPa ĸ

TRANS IENTS

The APTU is an intermittent (blow-down) -type true temperature test facility for testing air-breathing propulsion systems, aerodynamic systems and materials while simulating actual flight conditions at supersonic velocities. There is a diffusor and an annular jet pump installed but no connection is available to the central exhaust system.

Approximately 204 000 kg of compressed air may be stored at 27.6 MPa in an array of vessels with a total volume of $630~\text{m}^3$. The valving arrangement permits the division of the total volume into two independent storage systems one of which feeds the air through the stored energy heater (max matrix temperature 1366 K, max massflowrate 116 kg/s). The desired test conditions are produced by mixing both the cold and the heated air stream. In addition a vitiated air heater shall be available from 1980.

PUBLICATION ETC

AEDC Test Facilities Handbook, June 1979

3 CONTACT :

Arnold Engineering Development Center

AEDC/DOX

Arnold Air Force Station

Tennessee 37389

IISA

ALTITUDE TEST CELLS 6

ALTITUDE (MAX. NOMINAL)

30,0

FLIGHT MACH NO

- 3.5

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

National Gas Turbine

Pvestock Farnborough Altitude Test Facility

Establishment

Cell 4

TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Free Jet

Attitude

Ram-Jet

(Variation of intake incidence and yaw)

SIZE :

WIDTH

HEIGHT

DIAM 9 m

LENGTH 21 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

ka/s 270 max.

PRESSURE

kPa abs 300 max.

TEMPERATURE

ambient to 740

EXHAUST

MASS FLOW

kq/s 270

PRESSURE

kPa abs 35 (Min pres 11.3)

TEMPERATURE

2000

TRANSIENTS

Full engine transients plus flight transients

Mach No 0.02/s; pitch 10 0/s; yaw 5 0/s

REMARKS:

Cell 4 is a large free-jet supersonic test cell with a variable Mach number blowing nozzle and variation of incidence and/or yaw while running. It was designed to test engines of about 70 kg/s (150 lb/s) sea-level static flow over a range of Mach number from 1.5 to 3.5. The size of the blowing nozzle has since been doubled to 2.3 m 2 (25 sq ft) to enable tests of a Concorde intake and Olympus 593 engine to be carried out over a Mach number range from about 1.7 to 2.3. It has recently been used for free-jet testing at subsonic speeds.

Operating such large plant is costly and a meticulous approach is essential to ensure that the maximum amount of information is obtained in the shortest possible time. For this reason the test instrumentation is directly connected to a computer and the data processed on-line, giving the test controller immediate information on all the essential parameters, both measured and computed, whilst the test is in progress.

Cell is not at present in use but is being held on a care & maintenance basis.

MEASURING EQUIPMENT: No thrust measurement capability

Standard facility for 200 individual temperatures and 300 individual pressures plus shaft speed and fuel flow. 40 transient pressures can be continuously recorded on magnetic tape.

AND PROCESSING:

DATA ACQUISITION On-line processing (at data processing center) and display.

PUBLICATION ETC

Journal RAeS, Vol 74, pp 205-212 (1970)

3

CONTACT :

Director

NGTE Pyestock

Farnborough GU14 OLS

Hants UK

Phone Farnborough 44411

Telex 858231

÷ 30 ALTITUDE (MAX. NOMINAL) ALTITUDE TEST CELLS 6 FLIGHT MACH NO ÷ 3.5

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

NGTE National Gas Turbine Establishment

Pyestock Farnborough Altitude Test Facility Cell 1

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Ram-Jet

Free Jet

Turbo-Jet

SIZE :

WIDTH

HEIGHT

DIAM 3.7 m

LENGTH 37 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s

180 max

PRESSURE

kPa abs

910 max

TEMPERATURE

K ambient to 490 max

EXHAUST

MASS FLOW

kg/s

77

PRESSURE

kPa abs 50 (min pressure 14)

TEMPERATURE

2000

TRANSIENTS

Full engine transients

REMARKS

Cell 1 was originally designed for the free-jet testing of jet engines, also used for testing model air intakes for supersonic

aircraft and other altitude tests.

MEASURING

EQUIPMENT

Standard facilities for 200 individual temperatures and 300 in-

On-line processing (at data processing center) and display

dividual pressures plus shaft speed and fuel flow.

DATE ACQUISITION AND PROCESSING

PUBLICATION ETC General description and background

Engineering June 14, 21, 28 (1957)

3

CONTACT:

Director

NGTE

Phone Farnborough 44411

Telex 858231

Pyestock

Farnborough GU14 OLS

Hants

UK

27.5 ALTITUDE (MAX. NOMINAL) km ALTITUDE TEST CELLS 6 FLIGHT MACH NO 0.2 - 1.51 IDENTIFICATION ORGANISATION LOCATION TEST CELL DESIGNATION PWT 16 T Arnold Air Force Station Arnold Engineering Development Center Tennessee USA 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbo-Jet Free Jet Accepts engines with (closed loop wind tunnel) cowlings full scale Ram-Jet and in missiles SIZE : WIDTH 4.88 m HEIGHT 4.88 m DIAM LENGTH 12.2 m AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW kg/s 1.75 - 58.4 (operating range of stagnation pressure) PRESSURE kPa TEMPERATURE (operating range of stagnation temperature) 324 - 380 EXHAUST Mach-No - Flight Height Range 0.2 0 - 20 kkm MASS FLOW ka/s 0.8 0 - 24PRESSURE kPa 9.8 - 27.5 km 1.5 TEMPERATURE ĸ Mach-No $1.0 \div 1.6$ 50 discrete steps within 11 minutes TRANS IENTS The PWT comprises two separate Windtunnels 16 T (transonic) and 16 S (supersonic) Both tunnels employ the same set of two induction (25 and 18 MW) and two synchro nous motors (61 MW each) for driving their separate compressor sets. They are primarily designed for various aerodynamic tests but both have systems to remove engine exhaust gases from the tunnel and replace with clean air. Typical testing of air-breathing engines includes the following: 1) engine-inlet matching involving changes in pressure recovery and distribution with model altitude and engine power 2) propulsion nozzle and afterbody characteristics 3) variable geometry performance in inlet and nozzles 4) control systems interactions and response characteristics for complete propulsion systems 5) heat-transfer studies of cooling systems including auxiliary inlets and of internal cooling effectiveness The aim is usually a combined systems test i.e. propulsion and aerodynamics, and not engine performance. Therefor correct simulation of flight conditions is dispensable and some mismatch of stagnation temperature is tolerated. Both tunnels are equipped with flexible wall Laval-type nozzles leading into 4.88 m x 4.88 m quadrate test sections of up to 12 m length. Test section and supporting structure is an entire unit (test section cart) and removable from tunnel. Five carts are available (two 12m, three 6 m long) with different support systems (vertical strut pitching system; vertical pitch table; sting; special).+) PUBLICATION ETC AEDC Test Facilities Handbook +) Continued on page 8 - 2, Appendix II 3 CONTACT : Arnold Engineering Development Center AEDC/DOX Arnold Air Force Station Tennessee 37389 USA

ķт

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

27.4

FLIGHT MACH NO

- 4.2

1 IDENTIFICATION

ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls-Royce Ltd Aero Division Bristol Gipsy Patch North Bristol

TP 131 A

U.K.

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet Ram-Jet

Free Jet

Connected Duct

Allows also testing of small turbine engines, turbojet combustors, HP single spool units, and intake models

SIZE :

WIDTH

HEIGHT

DIAM 3.05 m LENGTH 24.4 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW PRESSURE

kq/s kPa

77.2 1138

295 (not continuously; HP-storage of

32700 kg air at max 24.8 MPa)

TEMPERATURE

÷ 723 (without vitiation)

EXHAUST

MASS FLOW

182 (maximum ejector mass flow) ka/s

PRESSURE

kPa

TEMPERATURE

10.3 623

TRANS LENTS

Missile boost simulation; spool engine acceleration/deceleration

simulation

REMARKS

The test cell in simple terms is a 10 feet diameter x 80 feet long pressure vessel (test cell) containing the unit on test which is fed with air at the correct temperature and pressure. Exhaust products and surplus air are removed from the test cell by steam driven ejectors. Control of atmospheric air in-bleed to the test cell determines the pressure within the cell and hence the altitude simulation. Subsidiary ejectors within the cell provide control of intake conditions under supersonic operation and additional altitude capability when required. Control of the plant is achieved by feed-back loop systems and

recently a computer has been installed to function in conjunction with systems to provide transient control. Systems are also

available for the control of fuels, oil and water.

MEASURING

EQUIPMENT

D.C.U.-system comprising 640 channels total. (50 Pt/PtRh / 200 Ch/Al thermocouples; 30 individual pressure channels, 7 x 48 port scanivalves; 2 thrust channels, 12 fuel flow channels, 5 F/Dc channels; 5 dialled in const.)

DATA ACQUISITION

AND PROCESSING

The data collection unit (D.C.U.) is linked to the central computer which provides on-line computed information in the test bed control room.

PUBLICATION ETC

3 CONTACT :

Mr. R.F. Jeffery, Assistant Chief Engineer Test Engineers Department

Gipsy Patch North

Rolls-Royce Ltd, Aero Division Bristol

P.O. Box 3

Filton, Bristol, U.K.

Phone Bristol 693871 Ext 384

6	ALTITUDE TEST	CELLS]	ALTITUDE (MAX. NOMINAL)			24.4 km	
					·			
1		TION Engineerina ment Centei	Arno Air	ation old Force Sta	ation	TEST CELL DE Propulsion Test Cell J 1		
2	TECHNICAL DATA							
	TYPE OF ENGINE		EST SECTION CO	NF IGURATION	1	SPECIAL CAPA	BILITY	
	Turbo-Jet Ram-Jet		ree Jet Lrect Connec	et		Icing Test		
	SIZE : WIDTH	НЕ	IGHT	DIAM	4.88 m	LENGTH	28.04	m
	AIR CONDITIONING,	SUPPLY, AND EXHAUS	T CAPACITY					
	MASS FLOW	kg/s 636	318	227	Refrige	erated 59	0	ł
	PRESSURE	kPa 241	586	827		8	9.6	
	TEMPERATURE	к 244 ÷	672			<u>></u> 21	9	1
	EXHAUST							
	MASS FLOW	kg/s 636						
	PRESSURE	kPa 2.7						
	TEMPERATURE	к						
	TRANSIENTS	Full engine tr	ransients					
	REMARKS:	Test cell pler for refrigerat	um has two					
	MEASURING EQUIPMENT:	Large quantity recorders and optimum perfor requirements.	indicators	was caref	ully sele	ected to pro	ovide	
		600 aerodynami	c pressure	channels				
		256 temperatur			•			
		132 low-speed	·=·			-		. ,
		200 high-speed Other types of article can be	instrument	ation sys		· ·		- 1
	DATA ACQUISITI AND PROCESSING	ON Computer cont includes two r recorders (ma motion pictur	real time Ćī Ignetic tape	RT graphic e, strip c	es display chart, osc	systems,	analog	ł
3	PUBLICATION ETC CONTACT:	AEDC Test Faci S.GALL, F.X. F Icing Test Cap Development Te Report No AED Arnold Enginee AEDC/DOX Arnold Air For Tennessee 3736	CLOYD Dability of est Cell (J-DC - TR - 70 ering Development Cell (Tring Development Cell Station)	the Engin	ne Test Fa	acility Prop	oulsion	

24.4 ALTITUDE (MAX. NOMINAL) 6 ALTITUDE TEST CELLS FLIGHT MACH NO - 3.3 1

IDENTIFICATION

ORGANISATION

Arnold Engineering Development Center LOCATION

Arnold Air Force Station

Tennessee

TEST CELL DESIGNATION

Propulsion Development

Test Cell

USA

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Free Jet

Ram-Jet

Direct Connect

SIZE :

WIDTH

HEIGHT

6.10 m DIAM

LENGTH

31.4 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 636 318

227

PRESSURE

241 kPa

586

827

TEMPERATURE ĸ 244 ÷ 672

kPa

EXHAUST

MASS FLOW

kg/s 636

PRESSURE

2.7

TEMPERATURE

TRANSIENTS

Full engine transients

REMARKS

Water-cooled exhaust duct.

MEASURING

Large quantity equipment of transducers, signal conditioners, recorders and indicators was carefully selected to provide optimum performance and reliability for a wide variety of testing

requirements.

600 aerodynamic pressure channels

344 temperature channels

104 low-speed general purpose channels (200 s/s max) 200 high-speed general purpose channels (20,000 s/s max)

Other types of instrumentation systems supplied with the test article can be accommodated.

DATA ACQUISITION

AND PROCESSING

Computer controlled digital data acquisition system (SEL 800) includes two real time CRT graphics display systems, analog recorders (magnetic tape, strip chart, oscillographs), indicators

motion picture and television systems.

PUBLICATION ETC AEDC Test Facilities Handbook, June 1979

3 CONTACT :

Arnold Engineering Development Center

AEDC/DOX

Arnold Air Force Station Tennessee 37389 USA

24.4 ALTITUDE (MAX. NOMINAL) ALTITUDE TEST CELLS 6 FLIGHT MACH NO ÷ 3.0 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION **AEDC** Arnold Propulsion Development Arnold Engineering Air Force Station Test Cell Tennessee Development Center T-1 USA

2 TECHNICAL DATA/CAPACITIES

> TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY

Turbo-Jet Free Jet

Ram-Jet Direct Connect

SIZE : 3.75 m LENGTH up to 22.9m WIDTH HEIGHT DIAM

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW 363 227 kg/s 241 483 PRESSURE kPa

TEMPERATURE 189 ÷ 652

EXHAUST

MASS FLOW kq/s 363 PRESSURE 2.7

TEMPERATURE

TRANS IENTS

REMARKS Free jet and wind tunnel aerodynamic testing can be performed using available nozzles at subsonic Mach numbers and at Mach

numbers 1.2; 1.6; 2.0 and 3.0.

Test article installation is accomplished through the aft end of the test cell by removal of the exhaust ducting and aft portion of the cell.

MEASURING

EQUIPMENT Thrust 134 kN

Large quantity equipment of transducers, signal conditioners, recorders and indicators was carefully selected to provide optimum performance and reliability for a wide variety of testing requirements.

300 aerodynamic pressure channels

288 temperature channels

192 high speed general purpose channels (20,000 samples/s max) Other types of instrumentation systems supplied with the test

article can be accommodated.

DATA ACQUISITION AND PROCESSING

Computer controlled data acquisition system (SEL 700) includes

limited on-line and quick-look capability.

PUBLICATION ETC AEDC Test Facilities Handbook, June 1979

3 **CONTACT**: Arnold Engineering Development Center

AEDC/DOX

Arnold Air Force Station

Tennessee 37389

USA

km.

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

24.4

FLIGHT MACH NO

- 3.0

1 <u>IDENTIFICATION</u>

ORGANISATION

AEDC Arnold Engineering Development Center

LOCATION Arnold

Air Force Station

Test Cell

Tennessee

USA

T-2

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

TEST CELL DESIGNATION Propulsion Development

Turbo-Jet

Free Jet

Ram-Jet

Direct Connect

Turbo-Prop

SIZE :

WIDTH

HEIGHT

DIAM 3.75 m

LENGTH up to 20.7

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

363 kg/s

227

PRESSURE

kPa 241 483

TEMPERATURE

K 189 ÷ 652

EXHAUST

MASS FLOW

kq/s 363

PRESSURE

kPa 2.7

TEMPERATURE

TRANS IENTS

REMARK

Test article installation is accomplished through the aft end of the test cell by removal of the exhaust ducting and aft portion of the cell.

MEASURING

EQUIPMENT

Thrust 134 kN Large quantity equipment of transducers, signal conditioners, recorders and indicators was carefully selected to provide

optimum performance and reliability for a wide variety of testing

requirements.

300 aerodynamic pressure channels

288 temperature channels

article can be accommodated.

192 high-speed general purpose channels (20,000 samples/s max) Other types of instrumentation systems supplied with the test

DATA ACQUISITION

AND PROCESSING

Computer controlled data acquisition system (SEL 700) includes limited on-line and quick-look capability.

PUBLICATION ETC

AEDC Test Facilities Handbook, June 1979

3 **CONTACT:**

Arnold Engineering Development Center

AEDC/DOX

Arnold Air Force Station Tennessee 37389 USA

ALTITUDE (MAX. NOMINAL) km 24.4 ALTITUDE TEST CELLS 6 ÷ 3.0 FLIGHT MACH NO 1 IDENTIFICATION ORGANISATION LOCATION TEST CELL DESIGNATION Propulsion Development AEDC Arnold Arnold Engineering Test Cell Air Force Station Tennessee Development Center IISA 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE SPECIAL CAPABILITY TEST SECTION CONFIGURATION Turbo-Jet Free Jet Ram-Jet Direct Connect LENGTH 16.8 m 3.75 m SIZE : WIDTH HEIGHT DIAM AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW ka/s 363 227 PRESSURE kPa 241 483 TEMPERATURE K 189 ÷ 652 EXHAUST MASS FLOW kg/s 363 PRESSURE kPa 2.7 TEMPERATURE TRANSIENTS REMARK Test article installation is accomplished through the aft end of the test cell by removal of the exhaust ducting and aft portion of the cell, alternatively an overhead hatch is available. MEASURING EQUIPMENT Thrust 134 kN Large quantity equipment of transducers, signal conditioners, recorders and indicators was carefully selected to provide optimum performance and reliability for a wide variety of testing requirements. 300 aerodynamic pressure channels 288 temperature channels 192 high-speed general purpose channels (20,000 samples/s max) Other types of instrumentation systems supplied with the test article can be accommodated. DATA ACQUISITION AND PROCESSING Computer controlled data acquisition system (SEL 700) includes limited on-line and quick-look capability. PUBLICATION ETC AEDC Test Facilities Handbook, June 1979

3

CONTACT:

Arnold Engineering Development Center

AEDC/DOX

Arnold Air Force Station Tennessee 37389 USA

ALTITUDE (MAX. NOMINAL) 24.4 km ALTITUDE TEST CELLS 6 FLIGHT MACH NO ÷ 3.0

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

Naval Air Propulsion

Trenton New Jersey Altitude Chamber

Center

USA

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Direct Connect

Icing Test

Ram-Jet

SIZE :

WIDTH

HEIGHT

DIAM 5.18 m LENGTH 9.14 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 318

PRESSURE

kPa 5.7 * 507

TEMPERATURE

219 ÷ 616

EXHAUST

MASS FLOW

318 kg/s

PRESSURE

kPa 1.0

TEMPERATURE

2200

TRANSIENTS

TECHNICAL EQUIPMENT Ram air facility

Variable exhaust diffusers

Refrigeration

Exhaust Gas Cooler

Heaters

Vacuum Exhausters

Quick response inlet and exhaust control valves

Inlet System Icing Capability

0.50 kg/s at 25 \cdot 10⁻⁶ m droplet size (via 100 spray nozzles) 0.19 kg/s at 15 · 10⁻⁶ m droplet size (via 100 spray nozzles)

MEASURING

EQUIPMENT

Thrust 222 kN

DATA ACQUISITION AND PROCESSING

Central on-line data acquisition and computation system with real time output of test data on a control room CRT, also

on-line tape data storage

J.F. BOYTOS, J. LEZNIAK

PUBLICATION ETC

NAPTC Facility Modifications Required for Altitude Testing of Current V/STOL Engine. Report No NAPC-PE-102 (May 1977)

3 CONTACT :

Resource Management Officer (RM) Naval Air Propulsion Center

Phone 609-882-1414

Operations and Plant Engineering Dep.

P.O. Box 7176

Exts. 298/373

Trenton, New Jersey 08628, USA

24.4 ALTITUDE (MAX. NOMINAL) km ALTITUDE TEST CELLS 6 FLIGHT MACH NO ÷ 2.4 1 IDENTIFICATION ORGANISATION LOCATION TEST CELL DESIGNATION Altitude Chamber Trenton NAPC Naval Air Propulsion New Jersey and Center USA 2E 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Icing Test Turbo-Jet Direct Connect SIZE : WIDTH HEIGHT 4.42 m 5.50 m DIAM LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW kg/s 195 PRESSURE kPa 5.7 ÷ 284 TEMPERATURE 219 ÷ 472 EXHAUST MASS FLOW kg/s 195 PRESSURE kPa 1.0 TEMPERATURE 2200 TRANSIENTS TECHNICAL Fixed exhaust diffusers **EQUIPMENT** Ram air facility Refrigeration Exhaust gas cooler Heaters Vacuum exhausters Quick response inlet and exhaust control valves Inlet System Icing Capability 0.50 kg/s at 25 \cdot 10⁻⁶ m droplet size (via 100 spray nozzles) 0.19 kg/s at 15 \cdot 10⁻⁶ m droplet size (via 100 spray nozzles) **MEASURING** EQUIPMENT Thrust 133 kN DATA ACQUISITION AND PROCESSING Central on-line data acquisition and computation system with real time output of test data on a control room CRT, also on-line tape data storage PUBLICATION ETC 3 **CONTACT**: Resource Management Officer (RM) Phone 609-882-1414 Naval Air Propulsion Center Operations and Plant Engineering Dep.

P.O. Box 7176

Trenton, New Jersey 08628, USA

Exts. 298/373

6 ALTITUDE TEST CELLS

altitude (max. nominal) 24.4 km

Flight mach no ÷ 3.0

1 IDENTIFICATION

ORGANISATION

LOCATION Arnold TEST CELL DESIGNATION

AEDC Arnold Engineering Development Center

Arnold Air Force Station Tennessee Propulsion Development Test Cell

Test

nessee

USA

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Free Jet

Direct Connect

SIZE :

WIDTH

HEIGHT

DIAM 0.91 m

LENGTH 5.50 m

NIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 170

PRESSURE

kPa 483

TEMPERATURE

k 219 ÷ 652

EXHAUST

MASS FLOW

kg/s 170

kPa

PRESSURE

2.7

TEMPERATURE

TRANSIENTS

REMARK

Test cell T-6 consists of a 2.14 m diameter inlet plenum chamber, the test section, and an exhaust diffuser. T-6 is preferably used for specific tests of rocket engines.

MEASURING

EQUIPMENT

Large quantity equipment of transducers, signal conditioners, recorders and indicators was carefully selected to provide optimum performance and reliability for a wide variety of testing requirements.

100 aerodynamic pressure channels

36 temperature channels

192 high-speed general purpose channels (20,000 samples/s max) Other types of instrumentation systems supplied with the test article can be accommodated.

DATA ACQUISITION

AND PROCESSING

Computer controlled data acquisition system (SEL 700) includes limited on-line and quick look capability.

PUBLICATION ETC

AEDC Test Facilities Handbook, June 1979

3 <u>contact</u>:

Arnold Engineering Development Center

AEDC/DOX

Arnold Air Force Station Tennessee 37389 USA

	 					
6	ALTITUME TEST C	LTITUDE TEST CELLS			TUDE (MAX. NOMINA	L) 24.4 km
	WELLIANC IEST C	LLLJ		FLIG	HT MACH NO	
			<u></u>		<u></u>	
1	<u>IDENTIFICATION</u>					
	ORGANISAT	ION		LOCATIO	N	TEST CELL DESIGNATION
		rechnolog l System	gics Corp. s Div.	Compor	e Center ment Develop- Laboratory	IRR Ground Test Faci- lity
_						
2	TECHNICAL DATA	CAPACITI	<u>E</u> S			
	TYPE OF ENGINE		TEST SECT	rion confi	GURATION	SPECIAL CAPABILITY
	Ramjet (Integral Rocke	t Ramjet				 Rocket to Ramjet Operation
	Prop. Systems)					 Complete Ramjet Flight Trajectory Tests
	SIZE : WIDTH		HEIGHT		DIAM	LENGTH
	AIR CONDITIONING,	SUPPLY, AN	D EXHAUST CAPAC	_	gh altitude	
	MASS FLOW	kg/s	ramjet igni	tion	cruise	storage capacity
	PRESSURE	kPa	45.4 ÷ 81.6 55.2 ÷ 96.5		3 ÷ 9 5.5	13 600 kg air compressed to 16.9 MPa
	TEMPERATURE	K	555 ÷ 667		7 ÷ 1111	maximum
		K	333 . 007		, , , , , ,	
	EXHAUST				a	
	MASS FLOW	kg/s	4.5 18 3.5 34.5		Steam accumu	ejector lator produces
	PRESSURE TEMPERATURE	kPa	3.3		34000 kg of :	steam at a rate of
		K			34 kg/s	
	TRANS IENTS					rolled by computer
	MAJOR COMPO- NENTS	liquid	flow system,	altitud	<pre>air heaters, e simulationsy t control cent</pre>	stem, thrust stand, er
	DATA ACQUISITION	CAPABII	ITY			
		Signal	Conditioning	r :		
11			ince bridge (thermocoup	ole)	36 chan 48 " 6 " 12 "	nels
		Recordi	ing:		12	
		Wide-ba Narrow Data lo Crossba	and FM tape (band FM tape) gger (25 chair scanner (3 write oscill	(0 - 2 nnels/s) 6 ch/s)	kHz) 48 " 110 " 36 "	
		Direct	write chart	(0-100 H	z) 16 "	
	Dime Document		ook data pri		2 "	- 6 m =
	DATE PROCESSING	-	-		•	g, frequency analysis, gital data reduction.
3	PUBLICATION ETC	Rocket	Ramjet Engin	es, AÍAA		cility for Integral 4, AIAA and SAE 78, Las Vegas
,	<u>CONTACT</u> :					

ALTITUDE (MAX. NOMINAL) 24.4 km 6 ALTITUDE TEST CELLS FLIGHT MACH NO ÷ 1.5 1 IDENTIFICATION ORGANISATION LOCATION TEST CELL DESIGNATION Arnold Propulsion Development Arnold Engineering Air Force Station Test Cell Development Center Tennessee USA 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Fuel Temperature Turbo-Jet Free Jet Conditioning Ram-Jet Direct Connect 219 ÷ 350 K SIZE : WIDTH HEIGHT DIAM 2.14 m LENGTH 5.20 m AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY from storage (214 m³at 27.6 MPa) continuously 45 MASS FLOW kg/s 41 18 PRESSURE kPa 276 1379 1724 227 ÷ 616 TEMPERATURE EXHAUST 170 MASS FLOW kg/s PRESSURE kPa 2.7 TEMPERATURE ĸ TRANS IENTS The test cell T-5 is designed for small aerodynamic tests and REMARK tests of small turbofan, turbojet and ram-jet engines (simulated air launched starts, inlet total pressure distortion). **MEASURING EQUIPMENT** Thrust 22 kN Large quantity equipment of transducers, signal conditioners, recorders and indicators was carefully selected to provide optimum performance and reliability for a wide variety of testing requirements. 240 aerodynamic pressure channels 192 temperature channels 200 high-speed general purpose channels (20,000 samples/s max) Other types of instrumentation systems supplied with the test article can be accommodated. DATA ACQUISITION AND PROCESSING Computer controlled data acquisition system (SEL 700) includes limited on-line and guide-look capability. PUBLICATION ETC AEDC Test Facilities Handbook, June 1979 3 **CONTACT:** Arnold Engineering Development Center AEDC/DOX

Arnold Air Force Station Tennessee 37389 USA

C	ALTITUME TEAT	THINE TECT CELLS		ALTITUDE (MAX. N	OMINAL)	21.3 km
6 ALTITUDE TEST (LELLS		FLIGHT MACH NO		÷ 4.0 #
1	IDENTIFICATION			:	for PSL - 3	only ÷ 3.0
1	IDENTIFICATION ORGANISA	TION		LOCATION	TEST CEL	L DESIGNATION
	NASA			Lewis Research Ce Cleveland, Ohio, USA	enter PSL - 4 (also T PSL - 3 (also T	
2	TECHNICAL DATA	/CAPACITIE	·s			
_	TYPE OF ENGINE	CAI ACT TIE	-	ION CONFIGURATION	SPECIAL (CAPABILITY
	Turbo-Jet		Direct	Connect		
	SIZE : WIDTH		HEIGHT	DIAM 7.	3 m LE	NGTH 11.9 m
	AIR CONDITIONING,	SUDDIV AND	ר דעאאווכיי ראסאר:	rmv		
	SUPPLY		namber Design		oly System Ca	pacity
	MASS FLOW	kg/s	Criteria 340	218	174	17
	PRESSURE	kPa '	1138	414	1138 3	206
	TEMPERATURE	к	227 - 624	Heating		. 060 %
	EXHAUST			12/ kg/s a Cooling	it 1138 kPa u	p to 960 K
	MASS FLOW	kg/s	340	181 kg/s		to 205 K
	PRESSURE	kPa	4.4			
	TEMPERATURE	к 2	2200			
	TRANSIENTS					
	MEASURING EQUIPMENT	Thrust		sent engine mount imum bed limit)	structure li	mit)
		600 72 384 30 24		tilizing 25 scaniv ne strain gauge tra rs		nel
	DATA ACQUISITION AND PROCESSING	1 On-	-site			_
			L 8600 Digita	-	PEAI 680 Ana - on-line com	-
			-line monitor	-		se information
			mits monitor			dynamic inlet stortion syste
		- equ	uipments and	systems control	pressure di	scorcion syste
			arious record gauge monitor	ers (tape, oscillo equipment	ographs, plot	ter) 75 channe
			note central	recording location 2.2	ı ! Digital Rec	ord
	PUBLICATION ETC	Mu: 195	-	ut (5 mV-2 V) multiplexed	Up to 30,00 from up to	O samples/s 200 input sig- look playback
		Direct	or. Propuleio	n Systems Laborato	nrv	
	<u>contact</u> :	NASA Le 21000 1	ewis Research Brookpark Roa and, Ohio 44	Center d	·~ 1	

21.3 ALTITUDE (MAX. NOMINAL) km ALTITUDE TEST CELLS 6 FLIGHT MACH NO ÷ 2.5

1 **IDENTIFICATION**

> ORGANISATION Rolls Royce Ltd. Aero Div. Derby

LOCATION Sinfin A Site Derby U.K.

TEST CELL DESIGNATION Altitude Test Facility Cell 1 Cell 2

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

LENGTH

Turbo-Jet

Free Jet

Turbo-Shaft (one cell only) Direct Connect

Reheat-Systems

SIZE : WIDTH 3.81 m

HEIGHT 2.75 m

3.81 m

11.5 m

DIAM (second cell)

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW PRESSURE

180 kg/s 500 kPa

193 + 453 TEMPERATURE

EXHAUST

MASS FLOW kg/s 272 PRESSURE kPa 2.75 TEMPERATURE 2100

Full transient capability for testing gas turbine engines from idling to max. mil. rating in 5 s (stability in 10 s) $\,$ TRANSIENTS

Two test cells run alternately. Six 17.5 MW exhausters/com-REMARK pressors electrically driven.

MEASURING

EQUIPMENT

Thrust 90 kN, shaft power 4500 kW

9 fuel flows 240 pressures 178 temperatures 3 speeds

 $\begin{array}{c} \underline{\text{DATA}} \ \ \underline{\text{ACQUISITION}} \\ \hline \underline{\text{AND}} \ \ \underline{\text{PROCESSING}} \\ \end{array} \text{Full automatic data recording by on-line computer.}$

PUBLICATION ETC

3 **CONTACT**:

Rolls Royce Ltd Aero Division Derby P.O. Box 31 Derby DE 2 8BJ

™hone 2352 - 42424

U.K.

ALTITUDE (MAX. NOMINAL) km 21.3 6 ALTITUDE TEST CELLS FLIGHT MACH NO ÷ 3.0

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

NASA

Lewis Research Center PSL-1 (TC-1) Cleveland, Ohio PSL-2 (TC-2)

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Direct Connect

Ram-Jet

SIZE :

WIDTH

HEIGHT

4.27 m DIAM

LENGTH 7.32 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

204 kg/s

PRESSURE

kPa 310

K TEMPERATURE

277 ÷ 624

4.4

EXHAUST

MASS FLOW PRESSURE

kg/s 204

kPa

ĸ

TEMPERATURE

TRANSIENTS

PUBLICATION ETC

3 **CONTACT**:

Director, Propulsion Systems Laboratory

NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135

USA

km,

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

20.0

FLIGHT MACH NO

÷ 4.0

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

R 5

CEPr Centre d'Essais des Saclay Orsay France

Propulseur

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Free Jet

Direct Connect

SIZE :

WIDTH

HEIGHT

DIAM

5.5 m

LENGTH 30.0 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 375

PRESSURE

700 kPa

TEMPERATURE K

EXHAUST

MASS FLOW

375 kg/s

PRESSURE

5.0 kPa

923

TEMPERATURE

2073

TRANS IENTS

MEASURING

EQUIPMENT

Thrust 300 kN

1000 channels

PUBLICATION ETC

3

CONTACT:

M. le Directeur

Centre d'Essais des Propulseurs

Saclay 91406 Orsay

France

6 ALTITUDE TEST CELLS

ALTITUDE (MAX. NOMINAL) 20.0 km

FLIGHT MACH N° ÷ 2.4

1 IDENTIFICATION

ORGANISATION

LOCATION

TEST CELL DESIGNATION

CEPr Centre d'Essais des Propulseurs Saclay Orsay France R 3

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Free Jet Direct Connect

SIZE :

WIDTH

HEIGHT

3.50 m

DIAM

LENGTH 18.00 m

 $\Breve{\Lambda}\Breve{IR}$ CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 200

PRESSURE

kPa 200

TEMPERATURE K

208 ÷ 473

5.0

EXHAUST

MASS FLOW

kg/s 200

PRESSURE kPa

TEMPERATURE

TRANS IENTS

MEASURING

EQUIPMENT

Thrust 200 kN

600 channels

PUBLICATION ETC

3 <u>contact</u>:

M. le Directeur

Centre d'Essais des Propulseurs

Saclay 91406 Orsay France

20.01) ALTITUDE (MAX. NOMINAL) km 6 ALTITUDE TEST CELLS 2.2 2) FLIGHT MACH NO 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION University of Stuttgart Vaihingen HPT Stuttgart F.R. of Germany 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbojet Free jet Ramjet Direct connect Turboshaft SIZE : WIDTH HEIGHT DIAM 3.00 m LENGTH 10.00 m AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW kg/s 70 PRESSURE kPa 196 TEMPERATURE ĸ 200 : 450 EXHAUST MASS FLOW 70 ka/s PRESSURE kPa 7.3 TEMPERATURE TRANSIENTS full engine and flight environment transients REMARKS 1) Maximum altitude for turboshaft engines 2) Maximum Mach-No at sea level The altitude test facility for turbo- and ram-engines is a multi-role highly adaptable test facility which permits also testing of components like compressors, turbines, combustion chambers. MEASURING Thrust 100 kN, shaft power 4500 kW EQUIPMENT DATA ACQUISI-TION AND Two data acquisition systems ZME 4 ZME 2 and PROCESSING 216 144 pressure channels 130 48 temperature channels 12 frequencies/speeds ZME 4 + 2: On-line display of test parameters and data recording on punched cards with subsequent processing on central Höhenprüfstand für Turboflugtriebwerke PUBLICATION ETC Beschreibung der Anlage ILA 80 A - 04 3 CONTACT : Prof. Dr.-Ing. W. Braig Phone 711 - 7841 Institut für Luftfahrtantriebe 07 255 727 Telex Universität Stuttgart

Pfaffenwaldring 6 7000 Stuttgart 80 (Vaihingen)

F.R. of Germany

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

19.8

FLIGHT MACH NO

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

NAPC

Trenton New Jersey Altitude Chamber

Naval Air Propulsion Center

USA

3 W

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Shaft

Direct Connect

SIZE :

WIDTH 2.44 m

HEIGHT 2.44 m DIAM LENGTH 4.57 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s 45.4

PRESSURE

kPa 5.76 ÷ 142

TEMPERATURE

219 ÷ 378

EXHAUST

MASS FLOW

kg/s 45.4

PRESSURE

kPa 2.7

TEMPERATURE

TRANSIENTS

TECHNICAL

Ram air facility EQUIPMENT

Exhaust gas cooler

Air heater/cooler

Vacuum exhauster

Water brakes

Fuel temperature conditioner 0.38 kg/s 216 ÷ 247 K

MEASURING

EQUIPMENT

Hydraulic Dynanometer CLAYTON MODEL TP 6000 4400 kW; 600 ÷ 1600 min⁻¹

DATA ACQUISITION AND PROCESSING

Central on-line data acquisition and computation system with

real time output of test data on a control room CRT.

Full printer listings; tape data storage

PUBLICATION ETC

3 **CONTACT:** Resource Management Officer (RM)

Naval Air Propulsion Center

Operations and Plant Engineering Dep.

P.O. Box 7176

Trenton, New Jersey 08628, USA

Phone 609-882-1414

Exts. 298/373

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

19.8

km

FLIGHT MACH NO

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

NAPC Naval Air Propulsion Trenton New Jersey Altitude Chamber

Center

USA

2 TECHNICAL DATA/CAPACITIES

> TYPE OF ENGINE Turbo-Shaft

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY Salt environment

Direct Connect

facility

SIZE : WIDTH HEIGHT

3.05 m DIAM

6.10 m LENGTH

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

45.4 kg/s

PRESSURE

kPa

kPa

5.76 ÷ 203

TEMPERATURE

219 ÷ 378

EXHAUST

MASS FLOW

kg/s

45.4

PRESSURE

2.7

TEMPERATURE

TRANSIENTS

TECHNICAL

EQUIPMENT

Ram air facility

Exhaust gas cooler

Air heater/cooler

Vacuum exhausters

Water brakes

Salt environment facility

Fuel temperature conditioner 0.38 kg/s 216 ÷ 347 K

MEASURING

EQUIPMENT

Thrust 89 kN; shaft power 4400 kW

108 pressure channels 160 temperature channels

10 frequencies 20 analog signals

DATA ACQUISITION AND PROCESSING

Central on-line data acquisition and computation system with

real time output of test data on a control room CRT.

Full printer listings; tape data storage

PUBLICATION ETC

3 **CONTACT:** Resource Management Officer (RM) Naval Air Propulsion Center

Operations and Plant Engineering Dep.

P.O. Box 7176

Trenton, New Jersey 08628, USA

Phone 609-882-1414 Exts. 298/373 6-26 19.8 ALTITUDE (MAX. NOMINAL) ALTITUDE TEST CELLS 6 FLIGHT MACH NO 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION NAPC Trenton Altitude Chamber New Jersey Naval Air Propulsion USA Center 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Direct Connect Turbo-Shaft SIZE : WIDTH 2.90 m 5.18 m HEIGHT 2.90 m DIAM LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW kg/s 45.4 5.76 ÷ 203 PRESSURE kPa TEMPERATURE K 219 ÷ 378 EXHAUST MASS FLOW kg/s 45.4 PRESSURE kPa 2.7 TEMPERATURE ĸ TRANSIENTS TECHNICAL EQUIPMENT Ram air facility Exhaust gas cooler Air heater/cooler Vacuum exhausters Water brakes Fuel temperature conditioner 0.38 kg/s 216 ÷ 347 K MEASURING EQUIPMENT Shaft power 4400 kW 108 pressures 10 frequencies 160 temperatures 20 analog signal DATA ACQUISITION AND PROCESSING Central on-line data acquisition and computation system with real time output of test data on a control room CRT. Full printer listings; tape data storage

PUBLICATION ETC

3 **CONTACT:**

Resource Management Officer (RM) Naval Air Propulsion Center

Operations and Plant Engineering Dep.

P.O. Box 7176

Trenton, New Jersey 08628, USA

Phone 609-882-1414 Exts. 298/373

ALTITUDE (MAX. NOMINAL) 19.8 km ALTITUDE TEST CELLS 6 FLIGHT MACH NO 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION NAPC Trenton Accessories & small engine environmental Naval Air Propulsion New Jersey Chamber 6 W Center USA 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbo-Shaft Direct Connect Test of Starters and APUs 3.05 m DIAM 3.05 m 5.18 m SIZE : WIDTH HEIGHT LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW kq/s 45.4 PRESSURE kPa 5.76 ÷ 203 TEMPERATURE ĸ 219 ÷ 378 EXHAUST MASS FLOW kg/s 45.4 kPa 2.7 PRESSURE TEMPERATURE ĸ TRANS IENTS TECHNICAL Ram air facility Exhaust gas cooler EQUIPMENT Air heater/cooler Vacuum exhausters Water brakes Fuel temperature conditioner 0.38 kg/s 216 - 347 K 220 kW electrical motor adjustable speed $0 \div 20,000$ min $^{-1}$ Fuel temperature conditioner 0.38 kg/s (accessories drive) MEASURING EQUIPMENT Shaft power 4400 kW DATA ACQUISITION AND PROCESSING Central on-line data acquisition and computation system with real time output of test data on a control room CRT. Full printer listings; tape data storage

PUBLICATION ETC

3 **CONTACT:** Resource Management Officer (RM) Naval Air Propulsion Center

Operations and Plant Engineering Dep. P.O. Box 7176

Trenton, New Jersey 08628

USA

Phone 609-882-1414 Exts. 298/373

ALTITUDE TEST CELLS 6

ALTITUDE (MAX. NOMINAL)

19

FLIGHT MACH NO

3.5

1 **IDENTIFICATION**

ORGANISATION

Establishment

National Gas Turbine

LOCATION Pyestock Farnborough TEST CELL DESIGNATION Altitude Test

Facility Cell 3

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Direct Connect/Free-jet

Icing Test

Ramjet

SIZE :

WIDTH

HEIGHT

DIAM 6 m

LENGTH 24 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s kPa

270 max

PRESSURE

200 max

TEMPERATURE

200 to 740 (870 for special installations)

EXHAUST

270

MASS FLOW

kg/s kPa abs

PRESSURE

38 (Min pres 11.3)

TEMPERATURE

2000

TRANSIENTS

Full engine transients

REMARKS

Connected tests can be made on engines such als Olympus 593, Pegasus, or Spey. Performance evaluation, engine handling,

altitude relight and icing trials are possible.

MEASURING

Thrust measuring capacity up to 220 kN

EQUIPMENT

CESSING

Standard facilities for 200 individual temperatures and 300 individual pressures plus shaft speed and fuel flow

DATA ACQUISI-TION AND PRO-

On-line processing (at data processing center) and display

PUBLICATION ETC

3 CONTACT :

Director NGTE

Pyestock

Farnborough GU14 OLS

Hants UK

Phone Farnborough 44411

Telex 858231

ALTITUDE (MAX. NOMINAL) 18 km 6 ALTITUDE TEST CELLS FLIGHT MACH NO Subsonic

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

National Gas Turbine Establishment

Pyestock Farnborough Altitude Test Facility

Cell 3W

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

Turbojet

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Direct Connect/Free-jet

Icing Test

SIZE :

WIDTH

HEIGHT

DIAM 7.5 m

LENGTH 17 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s

630 max

PRESSURE

kPa abs

ambient max

TEMPERATURE

236 to ambient

EXHAUS'T

MASS FLOW

kq/s

630

PRESSURE

kPa abs

48 (Min pres 11.3)

TEMPERATURE

TRANS IENTS

Full engine transients

REMARKS

Connected tests of high by-pass ratio turbofans in the 180-220 kN thrust class, also icing trials on helicopters

fuselage.

MEASURING

EQUIPMENT

Thrust measuring capacity up to 220 kN

Standard facilities for 200 individual temperatures and

300 individual pressures plus shaft speed and fuel flow

DATA ACQUISITION On-line processing (at data processing center) and display AND PROCESSING

PUBLICATION ETC

CONTACT :

3

P. F. ASHWOOD An Altitude Test Facility for Large Turbofan

Engines

Journ. Aircraft, Vol. 10, pp 468-474 (1973)

Director

NGTE

Phone Farnborough 44411 Telex 858231

Pyestock

Farnborough GU14 OLS

ALTITUDE (MAX. NOMINAL) ~ 17 km 6 ALTITUDE TEST CELLS - 2.5 FLIGHT MACH NO

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

NGTE National Gas Turbine Establishment

Pyestock Farnborough Altitude Test Facility Cell 2

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Ram-Jet

Direct Connect

Turbo-Jet

SIZE : WIDTH

HEIGHT

DIAM 3.7 m

37 m LENGTH

NIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s

180 max

PRESSURE

kPa abs

910 max

TEMPERATURE

ambient to 490 max

EXHAUST

MASS FLOW

kq/s

kPa abs

77

PRESSURE

50 (min pressure 14)

TEMPERATURE

2000

TRANS IENTS

Full engine transients

REMARKS

Cell 2 is used for connected testing of reheat systems without an engine and for a wide variety of tests on jet engines in-cluding tests at conditions representing low altitude and high subsonic speed. Cells exhausted by four air driven ejectors.

MEASURING EQUIPMENT

Thrust measuring capacity up to 220 kN

Standard facilities for 200 individual temperatures and

300 individual pressures plus shaft speed and fuel flow

DATA ACQUISITION On-line processing (at data processing center) and display AND PROCESSING

PUBLICATION ETC

General description and background

Engineering June 14, 21, 28 (1957)

3

CONTACT :

Director

NGTE

Phone Farnborough 44411

Telex 858231

Pyestock

Farnborough GU14 OLS

Hants HK

15.0 ALTITUDE (MAX. NOMINAL) ALTITUDE TEST CELLS 6 > 2.0 FLIGHT MACH NO 1 IDENTIFICATION TEST CELL DESIGNATION ORGANISATION LOCATION Saclay S 1 CEPr Centre d'Essais des Orsay Propulseurs France 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbo-Jet Free Jet Direct Connect Ram-Jet Turbo-Shaft DIAM 3.5 m WIDTH SIZE : HEIGHT LENGTH 15.5 m AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY MASS FLOW kg/s 100 PRESSURE kPa 200 10 ÷ 700 TEMPERATURE K 623 EXHAUST 100 MASS FLOW kg/s 5 PRESSURE kPa 293 + 1073 TEMPERATURE TRANS LENTS MEASURING EQUIPMENT Thrust 100 kN shaft power 2000 kW 400 channels DATA ACQUISITION
AND PROCESSING Central computer PUBLICATION ETC

3 **CONTACT**:

M. le Directeur

Centre d'Essais des Propulseurs

Saclay 91406 Orsay France

ALTITUDE TEST CELLS 6

ALTITUDE (MAX. NOMINAL)

13.7

k.m

FLIGHT MACH NO

1

1 IDENTIFICATION

ORGANISATION

LOCATION

TEST CELL DESIGNATION

United Technologies Corp. Pratt & Whitney

Aircraft Division

Andrew Willgoos Turbine Laboratory X - 217

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Direct connect

SIZE :

WIDTH

HEIGHT

DIAM 5.5 m

LENGTH 10.7 m

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s

545

PRESSURE

kPa

86,2

TEMPERATURE ĸ 305

EXHAUST

MASS FLOW PRESSURE

kg/s

kPa

TEMPERATURE

TRANSIENTS

MEASURING EQUIPMENT AND DATA ACQUISITION AND PROCESSING

- 1. Steady State Data Acquisition System 687 measurements including pressures, temperatures, speeds, flows, and thrust. All channels recorded within 90 sec. Processing for quick look purposes takes 3.5 - 5 minutes. Information in the form of final data and plots is available within 3 hours.
- 2. Transient Digital Data Systems

Analogue data are digitized and recorded on magnetic tapes

Three modes of operation

 single record (steady state)

- intervalometer (steady state and slow transient)

gapped continuous (fast transient recording)

20 000 data points/sec. 400 channels maximum

Speed depends on number of channels recorded i.e. 50 data point per channel and second minimum.

3. MARS = Multiplexed Analogue Recording System providing a record of the various parameters immediately before and during a failure.

PUBLICATION ETC G. D. Adamson Jet Engine Test Facilities: Laboratories for Tomorrow's Engines. ASME 71-WA/GT-12

ALTITUDE TEST CELLS 6

ALTITUDE (MAX. NOMINAL)

13.7

km

FLIGHT MACH NO

1 **IDENTIFICATION**

ORGANISATION

LOCATION

TEST CELL DESIGNATION

NRC

National Research Council Canada

NRC

NRC

DME Bldg M10-B Ottawa, Ontario Altitude facility

Canada

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbo-Jet

Turbo-Shaft

(small engines only)

SIZE :

WIDTH

HEIGHT

7 ÷ 21

2.13 m DIAM

3.66 m LENGTH

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s

PRESSURE

kPa ĸ

TEMPERATURE

335 kW air refrigeration system

EXHAUST

MASS FLOW PRESSURE

1.8 ÷ 5.4 kg/s

kPa

K

TEMPERATURE TRANS IENTS

PUBLICATION ETC

3 CONTACT : R.A. Tyler

Gas Dynamics Laboratory
Division of Mechanical Engineering

National Research Council Ottawa, Ontario K 1A OR6

Canada

Phone

613-993-2442

11.0¹⁾ km ALTITUDE (MAX. NOMINAL) ALTITUDE TEST CELLS 6 FLIGHT MACH NO ÷ 1.0 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION CEPr Saclay C 1 Centre d'Essais des Orsay Propulseurs France 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbo-Jet Free Jet Direct Connect Turbo-Shaft 8.0 m²⁾ SIZE : WIDTH 3.2 m HEIGHT DIAM LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY 50 MASS FLOW kg/s PRESSURE kPa 50 ÷ 120 208 ÷ 353 TEMPERATURE K EXHAUST MASS FLOW kg/s 55 PRESSURE kPa 5 TEMPERATURE 633 TRANS IENTS $^{1)}$ Max Altitude for turbo-shaft engines 5.6 km REMARK 2) Cylindrical vacuum chamber, position of one bulkhead adaptable MEASURING EQUIPMENT Thrust 10 kN Shaft Power 2000 kW 200 channels DATA ACQUISITION AND PROCESSING Central computer PUBLICATION ETC 3 **CONTACT**: M. le Directeur Centre d'Essais des Propulseurs

Saclay 91406 Orsay France

ALTITUDE (MAX. NOMINAL) 10.0 km 6 ALTITUDE TEST CELLS FLIGHT MACH NO $0.1 \div 1.0$ 1 IDENTIFICATION ORGANISATION LOCATION TEST CELL DESIGNATION CEPr Saclay R 2 Centre d'Essais des Orsay Propulseurs France 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Free Jet Turbo-Jet Icing Test Turbo-Shaft 3.5 m¹ SIZE : DIAM WIDTH HEIGHT LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY 6 ÷ 10 g/m³ water content MASS FLOW kg/s mean volumetric PRESSURE kPa diam of water droplets 15 ÷ 30 · 10⁻⁶ m TEMPERATURE ĸ 223 (under certain conditions) $40 \cdot 10^{-6}$ m EXHAUST MASS FLOW kg/s PRESSURE kPa TEMPERATURE TRANS IENTS 1) Maximum inlet diameter of vacuum test chamber for icing flow REMARK condition 1.15 m, below this diameter adaptable to test article. **MEASURING** EQUIPMENT Apparati used for measuring droplet diameter and water contact: - PMS probe (Dr. Knollenberg) - Fusil Napier - Aquasonde of French National Meteorological Service - turning cylinder - Ruskin's apparatus PUBLICATION ETC 3 Mr. I.A. Fagegaltier Centre d'Essais des Propulseurs Phone **CONTACT**: 1-941.81.50 Saclay Ext. 713 91406 Orsay

France

ALTITUDE (MAX. NOMINAL) km 10.0 6 ALTITUDE TEST CELLS FLIGHT MACH NO $0.1 \div 1.0$ 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION Saclay CEPr Centre d'Essais des Orsay Propulseurs France 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Free Jet Icing Test Turbo-Jet Turbo-Shaft 5.5 m¹⁾ SIZE : DIAM WIDTH HEIGHT LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY SUPPLY $6 \div 10 \text{ g/m}^3$ water content MASS FLOW kg/s mean volumetric diam PRESSURE kPa $15 \div 30 \cdot 10^{-6} \text{ m}$ of water droplets 223 TEMPERATURE ĸ (under certain conditions) 40 · 10⁻⁶ m EXHAUST MASS FLOW kg/s PRESSURE kPa TEMPERATURE TRANSIENTS 1) Maximum inlet diameter of vacuum test chamber for icing flow REMARK condition 1.7 m, below this diameter adaptable to test article. **MEASURING EQUIPMENT** Apparati used for measuring droplet diameter and water contact: - PMS probe (Dr. Knollenberg) - Fusil Napier - Aquasonde of French National Meteorological Service - turning cylinder - Ruskin's apparatus PUBLICATION ETC 3 Mr. I.A. Fagegaltier Centre d'Essais des Propulseurs **CONTACT**: Phone 1-941.81.50 Ext. 713 Saclay 91406 Orsay

France

6 ALTITUDE TEST CELLS ALTITUDE (MAX. NOMINAL)

km

FLIGHT MACH NO

1 IDENTIFICATION

ORGANISATION

LOCATION

TEST CELL DESIGNATION

Pratt & Whitney Aircraft Division Florida Research and Development

(JT-11 Test Stand)

Center

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

SIZE :

WIDTH

HEIGHT

DIAM

LENGTH

AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY

SUPPLY

MASS FLOW

kg/s

o Heated inlet air supply - 113.5 kg/s up to 755 K by

a J-75 jet engine

PRESSURE TEMPERATURE kPa

o Injection of demineralized water for temperature

control

EXHAUST

MASS FLOW

kg/s

o Exhaust ejector for improved pressure recovery

PRESSURE

kPa

o Engine is shrouded to simulate high temperature ambient air $% \left(1\right) =\left(1\right) +\left(1$

TEMPERATURE TRANSIENTS

MEASURING

EQUIPMENT Thrust 267 kN (445 kN)

PUBLICATION ETC

3 CONTACT: Pratt & Whitney Aircraft Division Florida Research and Development Center

P.O. Box 2691

West Palm Beach, Florida 33402

USA

ALTITUDE (MAX. NOMINAL) ALTITUDE TEST CELLS 6 FLIGHT MACH NO 1 **IDENTIFICATION** ORGANISATION LOCATION TEST CELL DESIGNATION Pratt & Whitney Florida Research High Mach Number Aircraft Division and Development Altitude Ram Test Center Stand C-4 and C-51) 2 TECHNICAL DATA/CAPACITIES TYPE OF ENGINE TEST SECTION CONFIGURATION SPECIAL CAPABILITY Turbo-Jet SIZE : WIDTH HEIGHT DIAM LENGTH AIR CONDITIONING, SUPPLY, AND EXHAUST CAPACITY
Heated air SUPPLY non vitiated 113.5 vitiated 57 218 ÷ 182 kg/s MASS FLOW 237 ÷ 406 406 406 PRESSURE kPa up to 644 up to 700 TEMPERATURE ĸ EXHAUST MASS FLOW 9.1₎₊₍54.5 5.1 50.8 kg/s PRESSURE kPa TEMPERATURE TRANSIENTS 1)C-5 test stand has atmospheric inlet capability REMARK DATA ACQUISITION AND PROCESSING Automatic data recording

PUBLICATION ETC

3 **CONTACT**:

Pratt & Whitney Aircraft Division Florida Research and Development Center P.O. Box 2691

West Palm Beach, Florida 33402

USA

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd. Aero Division Derby Hucknall England

No 9

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free-jet

Noise

Intake Compatibility

Cross Wind

X-Ray

Foreign Object Damage

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

The master open air performance test bed accepts large fan

engines

SPECIAL EQUIPMENT

Mobile measuring equipment for transients

AIR SUPPLY CAPACITY

MASS FLOW kg/s Unlimited

PRESSURE kPa Ambient

TEMPERATURE K Ambient

MEASURING EQUIPMENT Thrust 310 kN

DATA ACQUISITION AND PROCESSING Automatic data recording system

PUBLICATION

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd Aero Division Bristol Aston Down Nr. Strond Main Engine Test Site (A + B)

(Site rented by RR from Procurement Executive, Ministry of

Defense)

Glos. England

² <u>JECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Icing Noise

Field

Vectored Thrust

Foreign Object Damage

SIZE:

HTCIW 6320 m^2 HEIGHT

LENGTH

DESCRIPTION/COMMENT

concrete area

Depending on type, engines can be mounted on a choice of

DIAMETER

stands on either of two alternative adjacent sites. The star board side allows hardstanding mounting. Fore and aft and lateral noise recording up to 46 m radius.

SPECIAL EQUIPMENT

Vans equipped with transient u/v, straingauge and portable

data logging.

AIR SUPPLY CAPACITY

MASS FLOW kg/s Unlimited

PRESSURE kPa Ambient

TEMPERATURE K Ambient

MEASURING EQUIPMENT

Thrust 222 kN forward, 67 kN reverse

In addition to all basic engine driving instrumentation:

100 pressures up to 2760 kPa (gas) 20 pressures up to 13790 kPa (liquid) 60 temperatures thermocouples (12 alarms)

12 temperatures resistance

(6 alarms)

DATA ACQUISITION AND PROCESSING Manual

PUBLICATION

CONTACT:

R. F. Jeffery

Assistant Chief Engineer, Test Operations

Rolls Royce Ltd, Aero Division Bristol

P.O. Box 3

Bristol, England

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Naval Air Propulsion Center

NAS, Lakehurst New Jersey

Variable Attitude Stand

USA

² TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Turboshaft

Attitude

Jet Deflection Twin Engine Test

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

The test facility consists a variable attitude wing section and supports on which the wing and engine height can be varied from 1.5 to 7.6 m above the ground, a thrust, torque and engine rotation system and a control station containing the control and recording equipment.

SPECIAL EQUIPMENT

Pitch attitude speed between O and 2 rpm. Automatic dead weight compensation at all attitudes, capability of testing either a single engine or two engines simultaneously in a 1.5 to 12.2 m wing span.

AIR SUPPLY CAPACITY

MASS FLOW

kq/s Unlimited

kPa PRESSURE

Ambient

TEMPERATURE K

Ambient

MEASURING EQUIPMENT

DATA ACQUISITION AND PROCESSING

PUBLICATION

3 CONTACT:

Resource Management Officer

Code RM

Naval Air Propulsion Center

P. O. Box 7176

Trenton, New Jersey 08628, USA

Phone:

609 - 882 - 1414 Ext. 298 or 373

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

NAPC

Naval Air Propulsion Center

NAS, Lakehurst

Turntable Test

Facility

New Jersey

USA

² <u>TECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Noise

Turboshaft

IR-Signature

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

The facility consists of a thrust measurement table and engine stand mounted on a modified 127 mm/38 twin gun mount carriage. The carriage is used as the turning mechanism. The gun base rotates in a horizontal plane over a range of - 100° to + 100°. All types of engines can be installed on this stand. The engine can be locked at the various angles where thrust can be directly read out and continuously recorded during

SPECIAL EQUIPMENT

test operation. Characteristics of the stand are: thrust O to 222 kN, rotation direction - clockwise and counterclockwise, maximum rotations 200°, plane of rotation - horizontal, fixed speed of rotation - 0.23 rad/sec, turning table can be rotated and locked remotely at any angle with engine running, and

AIR SUPPLY CAPACITY

maximum live load is 0 to 11340 kg.

MASS FLOW kg/s

PRESSURE

Unlimited Ambient

TEMPERATURE K Ambient

MEASURING EQUIPMENT

Thrust 222 kN

DATA ACQUISITION AND PROCESSING

kPa

PUBLICATION

CONTACT:

Resource Management Officer Code RM

Naval Air Propulsion Center P. O. Box 7176

Trenton, New Jersey 08628, USA

Phone:

609 - 882 - 1414 Ext. 298 or 373

1 IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

CEPr

Saclay

Tree

Centre d'Essais des

Orsay

(Banc d'essais d'ingestion)

Propulseurs France

² <u>IECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Field

Foreign Object Damage

Turboshaft

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

Concrete area (55 m \times 25 m) consisting of three main parts

- one protected zone for shooting at fixed targets

- one open air zone

- a control cabin usable for either zone

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

kg/s Unlimited

PRESSURE kPa

Ambient

TEMPERATURE K

Ambient

MEASURING EQUIPMENT

Thrust 180 kN

250 parameters

DATA ACQUISITION AND PROCESSING Automatic data logging and processing by computer

PUBLICATION

3 CONTACT:

M'le Directeur

Centre d'Essais des Propulseurs

Saclay

91406 Orsay, France

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd

Hucknall England

No 5 TB

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Foreign Object Damage

Turboshaft

Intake Compatibility

Twin Engine

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

 $\underline{\underline{\mathtt{DESCRIPTION/COMMENT}}} \qquad \text{General purpose open air test bed capable of twin engine installation.}$

Not suitable for large fan engines

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW Unlimited kg/s Ambient PRESSURE kPa TEMPERATURE K Ambient

MEASURING EQUIPMENT Thrust 2 x 90 kN

Pressures, temperatures, speeds, all manual

DATA ACQUISITION AND PROCESSING

PUBLICATION

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd.

Hucknall England

No 7 TB

² <u>IECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Noise

Turboshaft

Intake Compatibility

Cross Wind

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

Open air performance test bed suitable for noise testing.

Intake test with cross wind.

Not suitable for large fan engines

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

Unlimited kg/s

PRESSURE kPa

Ambient

TEMPERATURE K

Ambient

MEASURING EQUIPMENT

Thrust 90 kN (Reverse 45 kN)

Pressures, temperatures, speeds, thrust, all manual

DATA ACQUISITION AND PROCESSING

PUBLICATION

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

United Technologies Corp. Pratt & Whitney Aircraft Florida Research and Development Center

West Palm Beach Florida

A - 8

2 JECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Heated Inlet

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

Thrust: No thrust measurement is available on this stand. The

thrust block is rated at 445 kN maximum force.

<u>Fuel-System:</u> Three independent fuel systems can supply jet fuels with flows up to 10 kg/s at 690 kPa (gamge) and ambient

temperature.

SPECIAL EQUIPMENT

Natural gas is available at flow rates up to 1.9 kg/s at 3.1 MPa (gamge)

ture module, and heater gas controls.

MASS FLOW

kg/s PRESSURE kPa

TEMPERATURE K

 $\underline{\mathtt{AIR}\ \mathtt{SUPPLY}\ \mathtt{CAPACITY}}$ A direct fired gas heater can heat 22.7 kg/s air to 422 K to simulate fan discharge temperatur to a core engine. The heater is connected to automatic controls which provide timed engine acceleration and deceleration cycles to achieve endurance testing on engine parts.

MEASURING EQUIPMENT

Test stand A-8 is not tied into Automatic Data and Acquisition Systems. However, manually read instrumentation is available in the test stand and consists of manometers (36 each by 2 m), vibration meters (4). Thermocouple readouts (1 vertical Brown with 56 channels), gauges (30), speed and flow digital readouts, over-temperature module, PLA programmer, timing and abort modules, RCVV schedule, HIGV error detector and tempera-

DATA ACQUISITION AND PROCESSING

PUBLICATION

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd

Hucknall England

No 10

² <u>TECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Foreign Object Damage

Intake Compatibility

Cross Wind

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

Closed test cell - non thrust measuring, accept large fan

engine,

design capacity 310 kN

SPECIAL EQUIPMENT

Computer controlled automatic throttle

AIR SUPPLY CAPACITY

MASS FLOW

907

PRESSURE

kPa

kg/s

ambient

exhaust pressure 148 kPa (abs)

TEMPERATURE K

ambient

exhaust temperature 1100 K

MEASURING EQUIPMENT

DATA ACQUISITION AND PROCESSING

PUBLICATION

IDENTIFICATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd

Gipsy Patch South

105 / 137

Aero Division Bristol

Bristol

England

² JECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

TP 105 Foreign Object Damage TP 105) Vectored Thrust

TP 137 Endurance

SIZE:

11.9 m

HEIGHT 13.4 m DIAMETER

LENGTH 21 m TP 137 24 m

DESCRIPTION/COMMENT This bed has been designed for use with the Pegasus range of engines. It has a cradle mounted engine which is suspended beneath the test stand the centre line of the engine being 4 m above ground level. The hot and cold jet flows are collected in four ducts and joined to issue into a commonletuner. This procedure allows adequate detuner cooling without water injec-

SPECIAL EQUIPMENT

tion in TP 105. In TP 137 provision for reheat work is made by providing reheat fuel flow and collector duct cooling capabilities.

AIR SUPPLY CAPACITY

MASS FLOW

kg/s 536 through splitters

PRESSURE

atmospheric

TEMPERATURE

ambient

exhaust temperature 773 K, dry

MEASURING EQUIPMENT Thrust 178 kN

vertical horizontal 178 kN 44.5 kN reverse

250/350 pressure lines 200/190 temperatur lines } manual readings

- DATA ACQUISITION AND PROCESSING 1. "On bed" RIKADENKI pen recorder with 6 channels to display any signal which can be converted to mV (i. e. speed, temperature, pressure, or flow)
 - 2. "Plug in" caravan recording and monitoring of any parameters. Closed circuit TV for engine monitoring.

PUBLICATION

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Pratt & Whitney

St. Hubert

5 - 11

Aircraft of Canada Ltd

Quebec Canada

² <u>TECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Foreign Object Damage

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

The system is capable of testing engines up to 22.3 kN $\,$ thrust capacity. The engine is operated in free air conditions, i. e. ambient conditions of temperature, pressure, and wind velocity. Effect of winds below 4.5 m/s are considered negligible. Operation in winds above 4.5 m/s is acceptable, providing the wind direction is within an arc of 180° infront of the engine.

SPECIAL EQUIPMENT

gun capable of shooting 1.8 kg birds at 224 m/s

AIR SUPPLY CAPACITY

MASS FLOW kg/s

PRESSURE

TEMPERATURE K

MEASURING EQUIPMENT

Thrust 222 kN

DATA ACQUISITION AND PROCESSING

kPa

PUBLICATION

3 CONTACT:

K. H. Scholz

Manager, Test Support Engineering Phone 677 - 9411 Ext. 619

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce Ltd

Hucknall

TB No 8

Aero Division Derby

England

² <u>TECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Cold Start

Turboshaft

SIZE:

WIDTH 6.1 m

HEIGHT 6.1 m

DIAMETER

LENGTH 6.1 m

DESCRIPTION/COMMENT

Low temperature starting facility for all types of RR

engines,

large fan engines with restricted massflow

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW PRESSURE

kg/s

kPa

204

ambient

exhaust pressure 138 kPa (gauge)

TEMPERATURE K

219 K

exhaust temperature 1100 K

MEASURING EQUIPMENT

Thrust 133 kN

DATA ACQUISITION AND PROCESSING

Measurement engineering mobile caravan with automatic data reduction link with Derby com-

puter.

PUBLICATION

IDENTIFICATION ORGANISATION LOCATION TEST CELL DESIGNATION

NAPC Trenton SLC 1 W Naval Air Propulsion Center New Jersey SLC 2 W

USA

2 JECHNICAL DATA/CAPACITIES

TEST SECTION CONFIGURATION SPECIAL CAPABILITY TYPE OF ENGINE

Turbojet Icing Water Ingestion

Turboshaft Corrosion

Hot + Cold Start

SIZE: width 7 m HEIGHT 4.3 m LENGTH 17.1 m

This facility consists of Sea Level Test Cells for testing DESCRIPTION/COMMENT air breathing engines at flight MACH-numbers up to 1.1. Liquid air from a 53 m 3 storage tank is piped to the inlet

of each cell. A spray bar with nozzles is used to distribute the liquid air in the air stream. This system supplements

DIAMETER

mechanical refrigeration. SPECIAL EQUIPMENT

The inlet section contains provision for water ingestion and icing tests of engines. Icing capability is 0.5 x 10^{-3} m³/s at 25 x 10^{-6} m droplet size through 100 spray nozzles and 0.22 x 10^{-3} m³/s at 15 x 10^{-6} m droplet size through 100

maximum continuous

spray nozzles.

5.75 : 284

AIR SUPPLY CAPACITY

PRESSURE

MASS FLOW 159 kq/s

÷ 377 219 TEMPERATURE K exhaust temperature 2200 K

MEASURING EQUIPMENT Thrust 133 kN (flexure supported thrust stand)

DATA ACQUISITION AND PROCESSING

kPa

The facility is connected to a central on-line data acquisition and computation system with real time output of test data on a control room CRT.

Full printer listings and tape data storage are also perfor-

med on-line.

PUBLICATION

Resource Management Offizer, Code RM Phone 609 - 882 - 1414 Naval Air Propulsion Center Ext. 298 or 373 3 CONTACT: Naval Air Propulsion Center

P.O. Box 7176

Trenton, New Jersey 08628, USA

7

SEA LEVEL TEST CELLS

IDENTIFICATION ORGANISATION

LOCATION Manching TEST CELL DESIGNATION

Motoren- und Turbinen-Union München GmbH

Ingolstadt F. R. Germany Open Air Test Bed

² JECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet Field

Foreign Object Damage

Attitude

SIZE:

width 6 m

HEIGHT 6 m

DIAMETER

LENGTH 12 m

DESCRIPTION/COMMENT

Open air test bed which can be sheltered by mobile hangar

suitable for testing of

- thrust reversing systems

- turbo-jet-engines with and without after burner e.g. RB 199

Noise measurements restricted.

SPECIAL EQUIPMENT

Engine turning mechanism: pitch angle ± 90° Also possible is turning the engine around its centre line $\pm 20^{\circ}$ for testing the oil system and internal air system. Equipment for bird ingestion tests (11 birds, Ma ~ 1)

AIR SUPPLY CAPACITY

MASS FLOW kg/s

100

PRESSURE kPa TEMPERATURE

ambient (test site 500 m above sea level) ambient; exhaust temperature 2000 K

MEASURING EQUIPMENT

ĸ

Thrust 80 kN (40 kN reverse) Measuring equipment conventional

Special equipment for measuring horizontal, vertical, and

assymmetric reverse thrust.

DATA ACQUISITION AND PROCESSING

PUBLICATION

CONTACT:

Mr. Kirschey, Code EVP Development Test Facilities

Phone 89 - 1489 - 708

MTU - München GmbH Dachauer Straße 665

8000 München 50, Federal Republic of Germany

DENTIFICATION RGANISATION

LOCATION

TEST CELL DESIGNATION

DFVLR

Köln-Porz

VMK

² TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Ramjet

Free jet

Attitude

SIZE:

WIDTH 4 m

HEIGHT 4 m

DIAMETER

LENGTH 6 m

Phone: 2203-601-2278

DESCRIPTION/COMMENT

The facility is a blow down windtunnel with vertical flow direction. A variety of axially symmetric nozzles in 3 sizes of up to 312 mm diameter is available. The test cell is built in reinforced concrete withstanding explosion

pressures up to 500 kPa.

SPECIAL EQUIPMENT

Flight Mach number range; subsonic - 3.2

quick change of pressure

change of angle of attack 2°/sec; range ± 15°.

AIR SUPPLY CAPACITY

MASS FLOW

kg/s ≤ 90

PRESSURE kPa ≤ 3500 kPa (stagnation pressure)

TEMPERATURE

≤ 770 K (stagnation temperature)

MEASURING EQUIPMENT

10 kN

3- and 6-component balances Forces:

Pressures:pressure transducers, scanivalves

Tempera-

Thrust

thermocouples, thermovision tures:

Others: Schlierenoptics, high speed camera

DATA ACQUISITION AND PROCESSING

Hewlett-Packard HP 2116 B, on-line

PUBLICATION

DLR - FB 65 - 24

3 CONTACT:

E.-O. Krohn

Institut für Experimentelle Strö-

mungsmechanik

DFVLR

Postfach 906058

5000 Köln 90, Federal Republic of Germany

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

NRC

Ottawa

No 4 TC

National Research Council

Ontario

(Engine Laboratory)

Canada

² TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Icing

SIZE:

WIDTH 7.5 m

HEIGHT 7.5 m DIAMETER LENGTH 18 m

DESCRIPTION/COMMENT

The permanently installed icing test facilities permit the generation of supercooled water droplets and of ice particles, as well as the admission of natural snow into the icing duct. Tests are being carried out under ambient pressures, but two air ejectors enable the simulation of forward flight velocity for a limited bypass stream. A heat exchanger provides limited air cooling, but tests depend basically on ambient temperature conditions.

SPECIAL EQUIPMENT

Supercooled water droplets

Ice particles Snow

15-40 µm, calibrated

Simulated flight velocity

10-500 µm, random natural snow collected and injected into air duct up to 190 m/s (430 mph) engine

and ejector combined, depending

Air cooling

on geometry of bypass duct 10°C at a mass flowrate of 27 kg/s

AIR SUPPLY CAPACITY

MASS FLOW kg/s 15 and 5 180

PRESSURE kPa 600 1000

TEMPERATURE K

ambient

MEASURING EQUIPMENT

DATA ACQUISITION AND PROCESSING

PUBLICATION

Mr. E.H. Dudgeon Tel. 613-993-2425

Section Head

Engine Laboratory

Division of Mechanical Engineering National Research Council Canada

Montreal Road

OTTAWA, Ontario. K1A OR6

Mr.W. Grabe Tel. 613-993-2214 Engine Laboratory Division of Mechanical

Engineering

National Research Council Canada, Montreal Road OTTAWA, Ontario. K1A OR6

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Pratt & Whitney

Longueuil

Quebec

Longueuil, Quebec

Canada

Canada

2 TECHNICAL DATA/CAPACITIES

Aircraft of Canada Ltd.

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Cold Start

1 - 11 A

Turboshaft

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

This cell is used to evaluate and investigate cold starting

characteristics of small turbine engines.

Air/methanol heat exchangers are used to cool the air in the

test chamber.

SPECIAL EQUIPMENT

The air circulation fan provides approximately three air changes per minute. Two completely separate cooling systems, each with a centrifugal pump for methanol circulation are provided. These may be operated together or independently

as required.

AIR SUPPLY CAPACITY

MASS FLOW kg/s

PRESSURE kPa

TEMPERATURE

MEASURING EQUIPMENT

DATA ACQUISITION AND PROCESSING

PUBLICATION

3 CONTACT:

K. H. Scholz

Phone 677 - 9411 Ext. 619

Manager, Test Support Engineering Pratt & Whitney Aircraft of Canada Ltd

Longueuil, Quebec

Canada

IDENTIFICATION ORGANISATION

LOCATION Saclay

TEST CELL DESIGNATION

Centre d'Essais

Orsay

des Propulseur

France

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turbojet

Free jet

Attitude

Turboshaft

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

SPECIAL EQUIPMENT

turntable, range - 30° to + 30° angular speed range 1 to 60° /s

AIR SUPPLY CAPACITY

MASS FLOW

kg/s

PRESSURE

kPa ambient

TEMPERATURE K

ambient

MEASURING EQUIPMENT Thrust 2 kN, Shaft Power 2000 kW

100 parameters

DATA ACQUISITION AND PROCESSING

PUBLICATION

3 CONTACT:

M. le Directeur

Centre d'Essais des Propulseurs

Saclay

91406 Orsay, France

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls-Royce Ltd

Victory Road

Hangar "H"

Aero Division

Derby

England

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turboshaft

Engine with propeller

SIZE:

WIDTH 7.9 m

HEIGHT 7.9 m DIAMETER LENGTH 44 m

DESCRIPTION/COMMENT

This facility is a propeller hangar incorporating a wing section which is capable of running turbo-shaft engines

up to 6700 kW.

Maximum diameter of propeller: 4.9 m

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW kg/s

PRESSURE kPa TEMPERATURE K

atmospheric

atmospheric

MEASURING EQUIPMENT

shaft power 6700 kW

manual

DATA ACQUISITION AND PROCESSING

PUBLICATION

3 CONTACT:

Rolls Royce Ltd, Aero Division, Derby DE 2 8 BJ, U.K.

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls-Royce

Pie / X Bld.

т 64

(Canada) Limited

Montreal

(Prop test cell)

Quebec

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE Turboshaft

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Engine with propeller

SIZE:

WIDTH

HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

The T 64 Turbo Prop is tested, using a RCAF slave propeller.

It is a torque reaction installation. (Fuel JP 4).

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

kg/s kPa

PRESSURE

TEMPERATURE K

MEASURING EQUIPMENT Shaft Power 2200 kW

DATA ACQUISITION AND PROCESSING

PUBLICATION

3 CONTACT:

Director of Quality Rolls Royce (Canada) Limited 9500 Cote de Liesse Road Lachine, Quebec Canada H4Y 1 B 7

Phone 514 - 631 - 3541

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls-Royce Ltd

Hatfield

No 16

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turboshaft

Twin Engine Test

SIZE:

width 4.9 m

HEIGHT 7.6 m DIAMETER LENGTH 11.6 m

DESCRIPTION/COMMENT Gnome twin wessex engines with coupling gear box

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

kg/s

PRESSURE

kPa TEMPERATURE K

MEASURING EQUIPMENT Shaft Power 1860 kW

DATA ACQUISITION AND PROCESSING

Mobile recording caravan

PUBLICATION

Aero- and Industrial Test Facilities Manual (Section 16)

3 CONTACT:

T. Goswell, RR Site Manager Phone Hatfield 63830 Manor Road Hatfield

England

IDENTIFICATION ORGANISATION

Rolls Royce

LOCATION Hatfield TEST CELL DESIGNATION

TB No 15

2 IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turboshaft

Pre-heated air

SIZE:

width 4.9 m

HEIGHT 2 m

DIAMETER

LENGTH 8.2 m

DESCRIPTION/COMMENT Helicopter turbo-shaft development test bed

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

kg/s

PRESSURE

kPa

TEMPERATURE K

MEASURING EQUIPMENT Shaft Power 1470 kW

DATA ACQUISITION AND PROCESSING

Mobile recording caravan

PUBLICATION

Aero- and Industrial Test Facilities Manual (Section 16)

3 CONTACT:

T. Goswell, R.R Site Manager Phone Hatfield 63830

Manor Road Hatfield England

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls Royce

Hatfield

TB No 12 13 A

² IECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turboshaft

Free jet

Pre-heated air

SIZE:

WIDTH 4.9 m

HEIGHT 2.7 m DIAMETER LENGTH 6 m

DESCRIPTION/COMMENT Helicopter turbo-shaft development test beds

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

kg/s

PRESSURE

kPa

TEMPERATURE K

MEASURING EQUIPMENT Shaft Power 1100 kW

U.W. Trace Recorders

DATA ACQUISITION AND PROCESSING

Automatic Data Recording schemed for 1980

PUBLICATION

Aero- and Industrial Test Facilities Manual (Section 16)

3 CONTACT:

T. Goswell, RR Site Manager Phone Hatfield 63830

Manor Road Hatfield

England

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Pratt & Whitney

Longueuil

1 - 1

Aircraft of Canada Ltd.

Canada

1 - 6

² <u>TECHNICAL DATA/CAPACITIES</u>

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turboshaft

Engine with propeller

SIZE: WIDTH HEIGHT

DIAMETER

LENGTH

DESCRIPTION/COMMENT

Propeller test cells used for testing the PT-6 turboprop engines. Cells are of the "L"-type configuration. Engine is mounted on an overhead stand accomodating propellers up to 3.35 m diameter.

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW

PRESSURE kPa ambient

TEMPERATURE ĸ ambient

385

MEASURING EQUIPMENT Shaft Power 956 kW

Test cells are fully instrumented for endurance performance

and other tests.

DATA ACQUISITION AND PROCESSING

PUBLICATION

3 CONTACT:

K. H. Scholz, Manager, Test Support Engineering

Pratt & Whitney Aircraft of Canada Ltd.

Longueuil, Quebec

Canada Phone: 677-9411

Ext. 619

IDENTIFICATION ORGANISATION

LOCATION

TEST CELL DESIGNATION

Rolls-Royce Ltd.

Hatfield England

TB No 21

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE Turboshaft

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Engine with propeller

SIZE:

WIDTH 4.8 m

HEIGHT 4.9 m DIAMETER LENGTH 42.7 m

DESCRIPTION/COMMENT

Prop-shaft engine ASTAZOU 16 D test bed Hangar test facility capable of full engine flight clearance test with propeller fitted, including reverse pitch operation. (propeller diam.

2.64 m).

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW kg/s

PRESSURE

TEMPERATURE

MEASURING EQUIPMENT Shaft Power 662 kW

U. V. trace Singer analyzer

DATA ACQUISITION AND PROCESSING

kPa

Recording caravan

PUBLICATION

Aero- and Industrial Test Facilities Manual (Section 16)

CONTACT:

T. Goswell, RR Site Manager

Phone Hatfield 63830

Manor Road Hatfield England

IDENTIFICATION

ORGANISATION

LOCATION

TEST CELL DESIGNATION

Plessey Comp. Ltd.

Abbey Works Titchfield

PASTF

Fareham, Hampshire

(Plessey Aerospace Test Facility)

England

TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE

TEST SECTION CONFIGURATION

SPECIAL CAPABILITY

Turboshaft

Direct connect

Icing Foreign Object Damage

Noise

Vibration Vectored Thrust

SIZE:

WIDTH 4.6 m HEIGHT 2.7 m DIAMETER LENGTH 9.1 m

DESCRIPTION/COMMENT Six cells

SPECIAL EQUIPMENT

Spin rig; inertia rig; cold box to 203 K soak

to 233 K operation

Hot testing at 323 K AIT and up to 403 K unit casing tempera-

ture

Vibration 31 kN thrust (10 G at 2.9 kN; 30 G at 0.8 kN)

AIR SUPPLY CAPACITY Free Air

Compressed Air

Exhaust

MASS FLOW kg/s

1.83 2.44 2.3

PRESSURE kPa 4.5

4137 2758

1.22

689.5

ambient

TEMPERATURE K

233 - 323

MEASURING EQUIPMENT Shaft Power: 2

223 kW 112 kW

8 56 kW

19 kW

Dynamometers

Pressure, temperature, and flow measuring devices covering air and fuel management techniques

DATA ACQUISITION AND PROCESSING

UV and pen recorders, micro-processor equipment, cine cameras

and video tape processes.

PUBLICATION

CONTACT

W. Renton, Test Facilities Manager, Test Work

R. B. Matthews, Deputy Engineering Executive

Engineering and Development Work

Plessey Comp. Ltd., Abbey Works Titchfield, Fareham, Hampshire, England

Phone: Titchfield 43031 Ext. 2428

Ext. 2401

IDENTIFICATION ORGANISATION

Alfa Romeo

LOCATION Napoli Italy

TEST CELL DESIGNATION Hangar Test Bed

2 TECHNICAL DATA/CAPACITIES

TYPE OF ENGINE Turboshaft

TEST SECTION CONFIGURATION

Free jet

SPECIAL CAPABILITY Engine with propeller

SIZE:

WIDTH 5 m

HEIGHT 6 m

DIAMETER

LENGTH 14 m

DESCRIPTION/COMMENT maximum diameter of propeller 2.3 m

SPECIAL EQUIPMENT

AIR SUPPLY CAPACITY

MASS FLOW kg/s PRESSURE kPa TEMPERATURE K

MEASURING EQUIPMENT

DATA ACQUISITION AND PROCESSING

Microcomputer for data acquisition Minicomputer for real time data analysis Main data storage on IBM 30/33

PUBLICATION

3 CONTACT:

Dott. Ing. G. Balassone - Technical Director Alfa Romeo, Pomigliano d'Arco, Napoli, Italy

8841 344 Tel. 710 083 ALFAPO Telex

APPENDIX I

1. MEMBERS OF SUBCOMMITTEE O1 OF THE PROPULSION AND ENERGETICS PANEL

Dr. J.G. Mitchell, Chairman
Director of Corporate Planning
Headquarters Arnold Engineering
Development Center (AFSC)
Arnold AF Station, Tennessee 37389, U.S.A.

Dr. R.B. Whyte Fuels and Lubricants Laboratory Division of Mechanical Engineering National Research Council Ottawa, Ontario K1A OR6, Canada

Section Moteurs
4 Ave. de la Porte d'Issy
75996 Paris Armées, France

Service Technique Aéronautique

M.I'Ingénieur Principal D. Mouranche

Dr. D.K.Hennecke Motoren und Turbinen Union GmbH (MTU) Abt. EW Dachauerstrasse 665 8000 München 50, Fed. Rep. of Germany Professor C. Casci Politecnico di Milano Istituto di Macchine Piazza Leonardo da Vinci 32 20133 Milano, Italy

Dr. Ing. G. Maoli Fiat s.p.A. Via L. Bissolati 57 OO187 Roma, Italy Ir.J.P.K. Vleghert National Aerospace Laboratory P.O. Box 90502 Anthony Fokkerweg 2 1059 CM Amsterdam, The Netherlands

Mr. A.J.B. Jackson Rolls Royce Limited Aero Division P.O. Box 31 Derby DE2 8BJ, England

Mr. A.A. Martino Manager, Research and Technology Group Naval Air Propulsion Center (Code PE~4) P.O. Box 7176 Trenton, New Jersey 08628, U.S.A.

 PROPULSION AND ENERGETICS PANEL MEMBERS having solicited data or supported the activity otherwise.

M. le Professeur Ch. Hirsch Vrije Universiteit Brussel Dept. de Mécanique des Fluides Pleinlaan 2 1050 Bruxelles, Belgique Professor Dr. B. Qvale Laboratoriet for Energiteknik Polytekniske Laereanstalt Bygning 403 B, Lundtoftvej 100 2800 Lyngby, Denmark

M.J.F. Chevalier Ingénieur en Chef - Recherches SNECMA Centre d'Essais de Villaroche 77550 Moissy-Cramayel, France Professor Dr.-Ing. G. Winterfeld DFVLR Institut für Antriebstechnik Postfach 906058 5000 Köln 90, Fed.Rep. of Germany

Mr. G. Kristofersen Norwegian Defence Research Establishment Division for Weapons & Equipment P.O. Box 25 N-2007 Kjeller, Norway Dr. Ahmet UCER Middle East Technical University O D T Ü Makina Muh. Bölümü Ankara, Turkey

Engineer Mario N.R. Nina CTAMFUL Instituto Superior Tecnico Avenida Rovisco Pais Lisboa 1, Portugal Dr. J. Dunham
National Gas Turbine Establishment
Pyestors
Farnborough, Hants GU 14 OLS
England

Mr. H.I. Bush
Deputy Director,
Turbine Engine Division/ TB
Air Force Aero Propulsion Lab.
Wright-Patterson AFB, Ohio 45433, U.S.A.

APPENDIX II

Altitude Test Cell Information continued

1. PWT 16 S continued from page 6 - 1

Test section and supporting structure is an entire unit (test section cart) and removable from the tunnel. Five carts are available (two 12 m, three 6 m long) with different support systems (vertical strut pitching system, vertical pitch table, sting, special) Two carts have perforated walls for unchoking the test section near sonic speeds and for alleviating wall interference effects.

The same compressor drive system, with a total capacity of 166 MW, is used for both tunnels PWT 16 S and PWT 16 T. The main compressor of PWT 16 S consists of four axial-flow compressors(barrels), which are orientated such that any number from one to four barrels may be operated in series. The compressor operates at a constant speed of 600 rpm with volume flow adjustment provided by remotely controlled inlet guide vanes and stator blades of the first, second, and third barrels.

Various auxiliary supply systems are installed: electrical power systems, fuel systems, liquid propellant supply system, explosion and fire prevention system, high pressure auxiliary air supply systems.

2. PWT 16 T continued from page 6 - 6

Two carts have perforated walls for unchoking the test section near sonic speeds and for alleviating wall interference effects.

The same compressor drive system, with a total capacity of 166 MW, is used for both tunnels PWT 16 T and PWT 16 S. The tunnel 16 T compressor, which normally operates at a constant speed of 600 rpm, is a three-stage, axial-flow machine having a 9.14 m tip diameter and a hub-to-tip ratio of 0.6. The inlet guide vanes and the three interstage stator rows of the compressor are remotely controllable through an angle range that satisfies the range of volume flow requirements. Subsynchronous, variable speed operation is also possible and this extends the tunnel operating range to low subsonic Mach numbers.

Various auxiliary supply systems are installed: electrical power systems, fuel systems, liquid propellant supply system, explosion and fire prevention system, high pressure auxiliary air supply system.

8.3 APPENDIX III: ABBREVIATIONS

AIRes. AIResearch Manufacturing Co.

AEDC Arnold Engineering Development Center

AFAPL Air Force Aero Propulsion Laboratory

AR Alfa Romeo

BR Bristol

CA California

CC-AMPD Confederation College of Applied Arts & Technology

Aviation & Motive Power Department

CEPr Centre d'Essais des Propulseurs

CRT Cathode Ray Tube

CT Connecticut

CU-GTL Carleton University

Gas Turbine Laboratory

DCU Data Collection Unit

DDAD General Motors Corporation

Detroit Diesel Allison Division

DE Derby

Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V. DFVLR

EM Costruzioni Aeronautiche G. Agusta

Elicotteri Meridionali

FIAT Fiat Aviazione S.p.A.

FL Florida

FOD Foreign Object Damage

GE General Electric Co.

H Height Hatfield HA HU Hucknall

IRR Integral Rocket Ramjet

JHU-APL The Johns Hopkins University Applied Physics Laboratory

Length

LUCAS Lucas Aerospace Limited

MAR The Marquardt Co.

MTU Motoren- und Turbinen-Union München GmbH

NAPC Naval Air Propulsion Center

National Aeronautics and Space Administration NASA-LE

Lewis Research Center

NGTE National Gas Turbine Establishment

NPT Noel Penny Turbines Limited

NRC National Research Council Canada

¹⁾ Test Cell Designations, Engine Designations, and SI-Units not included

8.3 APPENDIX III : ABBREVIATIONS 1)

PL	Plessey Company Limited
P&W-AC	Pratt & Whitney Aircraft of Canada Ltd.
P&W-AW	United Technologies Corporation Pratt & Whitney Aircraft Division Commercial Products Division Andrew Willgoos Turbine Laboratory
P&W-FL	United Technologies Corporation Pratt & Whitney Aircraft Division Government Products Division Florida Research & Development Center
RJ	Ram-Jet
RR-BR	Rolls Royce Limited Aero Division, Bristol
RR-CA	Rolls Royce (Canada) Limited
RR-DE	Rolls Royce Limited Aero Division, Derby
RR-HA	Rolls Royce Limited, Hatfield
RR-HU	Rolls Royce Limited, Hucknall
SNECMA	Société Nationale d'Etude et de Construction de Moteurs d'Aviation
s/s	Samples/Second
TE-CAE	Teledyne CAE
TJ	Turbo-Jet (including Turbo-Fan)
TS	Turbo-Shaft
US-ILA	Universität Stuttgart Institut für Luftfahrt-Antriebe
UT-CSD	United Technologies Corporation Chemical Systems Division
W	Width
WE-CA	Westinghouse Canada Limited

 $^{^{1)}}$ Test Cell Designations, Engine Designations, and SI-Units not included

QUICK USER'S FLOW CHART

		REPORT DOCU	MENTATION PAGE	
1. Recipient's Ref	ference	2. Originator's Reference	3. Further Reference	4. Security Classification of Document
	İ	AGARD-AG-269	ISBN 92-835-1394-0	UNCLASSIFIED
5. Originator	North	ory Group for Aerospace Atlantic Treaty Organiz Ancelle, 92200 Neuilly		ent
6. Title	•			• • •
	AIR-B	REATHING ENGINE T	TEST FACILITIES REGIS	STER
7. Presented at				
0.4.4				
8. Author(s)/Edit				9. Date
	Joachi	m H.Krengel		July 1981
10. Author's/Edito	or's Addres	SS		11. Pages
				126
12. Distribution St	atement	policies and regulati	stributed in accordance with the stributed in accordance with the stributed on the stributed in accordance with the stributed with the stributed in accordance with the stributed with the stributed in accordance with the stributed with	n the
13. Keywords/Desc	riptors			
		cilities, test cells athing engines	Turbo-sh Ramjet e	naft engines engines

14. Abstract

Jet engines

Turbofan engines

Complementary to the Symposium on 'Turbine Engine Testing', sponsored by the Propulsion and Energetics Panel, and held in Turin, Italy on 29 September—3 October 1980, a register of airbreathing engine test facilities was compiled, aimed at comprising the test facilities relevant for research and development in NATO countries. Included are test facilities being in use or under construction at the various research organizations, industrial firms, and universities.

Sea level test facilities

Altitude test facilities

Test facilities and their technical data are given as far as the response to a questionnaire was received or open literature was available. Nevertheless interested test engineers will be able to find whether a test facility suiting their specific demands already exists or may be easily adapted to their purposes.

In order to ease contacts with organizations, complete addresses are given and cross-reference from the lists of test facilities and their data sheets to the list of organizations or vice versa is possible.

This AGARDograph was prepared at the request of the Propulsion and Energetics Panel of AGARD.

AGARDograph No. 269 Advisory Group for Aerospace Research and	AGARD-AG-269	AGARDograph No. 269 Advisory Group for Aerospace Research and	AGARD-AG-269
GINE TEST	Test facilities, test cells	GINE TEST FACILIT	Test facilities, test cells Airbreathing engines
Compiled by Joachim H.Krengel	Jet engines	Compiled by Joachim H. Krengel	Jet engines
Published July 1981 126 pages	Turbofan engines Turbo-shaft engines	Published July 1981 126 pages	Turbofan engines Turbo-shaft engines
Complementary to the Commonsium on Turkine Engine	Ramjet engines	Complementary to the Symposium on Turkine Fingine	Ramjet engines Sea level test facilities
Testing, sponsored by the Propulsion and Energetics	Altitude test facilities	Testing, sponsored by the Propulsion and Energetics	Altitude test facilities
Panel, and held in Turin, Italy on 29 September -3 October 1980, a register of airbreathing engine test facilities was compiled, aimed at comprising the test facilities relevant for research and development in		Panel, and held in Turin, Italy on 29 September 3 October 1980, a register of airbreathing engine test facilities was compiled, aimed at comprising the test facilities relevant for research and development in	
NATO countries. Included are test facilities being in		NATO countries. Included are test facilities being in	
P.T.O.		P.T.O.	
AGARDograph No. 269 Advisory Groun for Aerospace Research and	AGARD-AG-269	AGARDograph No. 269 Advisory Group for Aerospace Research and	AGARD-AG-269
GINE TEST	Test facilities, test cells	ပ	Test facilities, test cells
	Airbreathing engines		Airbreathing engines
Compiled by Joachim H.Krengel Published July 1981	Jet engines Turbofan engines	Compiled by Joachim H.Krengel Published July 1981	Jet engines Turbofan engines
126 pages	Turbo-shaft engines Ramiet engines	126 pages	Turbo-shaft engines Ramjet engines
Complementary to the Symposium on 'Turbine Engine Testing', sponsored by the Propulsion and Energetics	Sea level test facilities Altitude test facilities	Complementary to the Symposium on Turbine Engine Testing, sponsored by the Propulsion and Energetics Panel and India Train Italy on 30 Sentember	Sea level test facilities Altitude test facilities
facilities was compiled, aimed at comprising the test		3 October 1980, a register of airbreathing engine test facilities was compiled, aimed at comprising the test	
facilities relevant for research and development in NATO countries. Included are test facilities being in		lacilities relevant for research and development in NATO countries. Included are test facilities being in	
P.T.O.		P.T.O.	

•

use or under construction at the various research organizations, industrial firms, and universities.	use or under construction at the various research organizations, industrial firms, and universities.
Test facilities and their technical data are given as far as the response to a questionnaire was received or open literature was available. Nevertheless interested test engineers will be able to find whether a test facility suiting their specific demands already exists or may be easily adapted to their purposes.	Test facilities and their technical data are given as far as the response to a questionnaire was received or open literature was available. Nevertheless interested test engineers will be able to find whether a test facility suiting their specific demands already exists or may be easily adapted to their purposes.
In order to ease contacts with organizations, complete addresses are given and cross-reference from the lists of test facilities and their data sheets to the list of organizations or vice versa is possible.	In order to ease contacts with organizations, complete addresses are given and cross-reference from the lists of test facilities and their data sheets to the list of organizations or vice versa is possible.
This AGARDograph was prepared at the request of the Propulsion and Energetics Panel of AGARD.	This AGARDograph was prepared at the request of the Propulsion and Energetics Panel of AGARD.
ISBN 92-835-1394-0	ISBN 92-835-1394-0
use or under construction at the various research organizations, industrial firms, and universities.	use or under construction at the various research organizations, industrial firms, and universities.
Test facilities and their technical data are given as far as the response to a questionnaire was received or open literature was available. Nevertheless interested test engineers will be able to find whether a test facility suiting their specific demands already exists or may be easily adapted to their purposes.	Test facilities and their technical data are given as far as the response to a questionnaire was received or open literature was available. Nevertheless interested test engineers will be able to find whether a test facility suiting their specific demands already exists or may be easily adapted to their purposes.
In order to ease contacts with organizations, complete addresses are given and cross-reference from the lists of test facilities and their data sheets to the list of organizations or vice versa is possible.	In order to ease contacts with organizations, complete addresses are given and cross-reference from the lists of test facilities and their data sheets to the list of organizations or vice versa is possible.
This AGARDograph was prepared at the request of the Propulsion and Energetics Panel of AGARD.	This AGARDograph was prepared at the request of the Propulsion and Energetics Panel of AGARD.
ISBN 92-835-1394-0	ISBN 92-835-1394-0

AGARD

NATO 🕀 OTAN

7 RUE ANCELLE · 92200 NEUILLY-SUR-SEINE

FRANCE

Telephone 745.08.10 - Telex 610176

DISTRIBUTION OF UNCLASSIFIED AGARD PUBLICATIONS

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD publications is made to AGARD Member Nations through the following National Distribution Centres. Further copies are sometimes available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies listed below.

NATIONAL DISTRIBUTION CENTRES

BELGIUM

Coordonnateur AGARD – VSL Etat-Major de la Force Aérienne Quartier Reine Elisabeth Rue d'Evere, 1140 Bruxelles

CANADA

Defence Science Information Services Department of National Defence Ottawa, Ontario K1A OK2

DENMARK

Danish Defence Research Board Østerbrogades Kaserne Copenhagen Ø

FRANCE

O.N.E.R.A. (Direction)
29 Avenue de la Division Leclerc
92320 Chatillon sous Bagneux

GERMANY

Fachinformationszentrum Energie, Physik, Mathematik GmbH Kernforschungszentrum D-7514 Eggenstein-Leopoldshafen 2

GREECE

Hellenic Air Force General Staff Research and Development Directorate Holargos, Athens

ICELAND

Director of Aviation c/o Flugrad Reykjavik

ITALY

Aeronautica Militare Ufficio del Delegato Nazionale all'AGARD 3, Piazzale Adenauer Roma/EUR

LUXEMBOURG

See Belgium

NETHERLANDS

Netherlands Delegation to AGARD National Aerospace Laboratory, NLR P.O. Box 126 2600 A.C. Delft

NORWAY

Norwegian Defence Research Establishment Main Library P.O. Box 25 N-2007 Kjeller

PORTUGAL

Direcção do Serviço de Material da Forca Aerea Rua da Escola Politécnica 42 Lisboa Attn: AGARD National Delegate

TURKEY

Department of Research and Development (ARGE)
Ministry of National Defence, Ankara

UNITED KINGDOM

Defence Research Information Centre Station Square House St. Mary Cray Orpington, Kent BR5 3RE

UNITED STATES

National Aeronautics and Space Administration (NASA)
Langley Field, Virginia 23365
Attn: Report Distribution and Storage Unit

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

PURCHASE AGENCIES

Microfiche

Space Documentation Service European Space Agency 10, rue Mario Nikis 75015 Paris, France

Microfiche

Technology Reports Centre (DTI) Station Square House St. Mary Cray Orpington, Kent BR5 3RF England

Metiocosises of AGARD documents should include the AGARD serial number, title, author or editor, and the Metion and the NASA accession report number. Full bibliographical references and abstracts of AGARD publications are given in the following journals:

Reports (STAR)

Government Reports Announcements (GRA) published by the National Technical Information Services, Springfield Virginia 22161, USA

E

Minted by Technical Editing and Reproduction Ltd

92-835-1394-0

-4